A document describes a concept for an inertial sensor for measuring the rotation of an inertially stable spacecraft around its center of gravity to within 100 microarc- seconds or possibly even higher precision. Whereas a current proposal for a spacecraft-rotation sensor of this accuracy requires one spacecraft dimension on the order of ten meters, a sensor according to this proposal could fit within a package smaller than 1 meter and would have less than a tenth of the mass. According to the concept, an inertial mass and an apparatus for monitoring the mass would be placed at some known distance from the center of gravity so that any rotation of the spacecraft would cause relative motion between the mass and the spacecraft. The relative motion would be measured and, once the displacement of the mass exceeded a prescribed range, a precisely monitored restoring force would be applied to return the mass to a predetermined position. Measurements of the relative motion and restoring force would provide information on changes in the attitude of the spacecraft. A history of relative- motion and restoring-force measurements could be kept, enabling determination of the cumulative change in attitude during the observation time.

This work was done by David Rosing, Jeffrey Oseas, and Robert Korechoff of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.techbriefs.com/tsp under the Mechanics category. NPO-41926

This Brief includes a Technical Support Package (TSP).
Compact, Precise Inertial Rotation Sensors for Spacecraft

(reference NPO-41926) is currently available for download from the TSP library.

Don't have an account? Sign up here.