NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation’s airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical.
The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (≈0.03 m3). The system reduced to practice a CT-TDTHz system incorporating a COTS 80-ps/lkHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D slice data with better signal-tonoise using a COTS scanner rather than the “chirped” scanner. The system also reduced to practice a prototype for commercial CT systems for insulating materials where safety concerns cannot accommodate x-ray. A software script was written to automate the COTS software to collect and process TD-THz CT data.
This work was done by David Zimdars of Picometrix LLC, subsidiary of Advanced Photonix, Inc. (Amex: API) for Glenn Research Center.
Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steven Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. LEW-18776-1