A report discusses physicochemical issues affecting a fluoride-intercalating cathode that operates in conjunction with a lithium ion-intercalating anode in a rechargeable electrochemical cell described in a cited prior report. The instant report also discusses corresponding innovations made in solvent and electrolyte compositions since the prior report. The advantages of this cell, relative to other lithium-ion-based cells, are said to be greater potential (5 V vs. 4 V), and greater theoretical cathode specific capacity (0.9 to 2.2 A-h/g vs. about 0.18A-h/g). The discussion addresses a need for the solvent to be unreactive toward the lithium anode and to resist anodicoxidation at potentials greater than about 4.5 V vs. lithium; the pertinent innovation is the selection of propylene carbonate (PC) as a solvent having significantly more stability, relative to other solvents that have been tried. The discussion also addresses the need for an electrolyte additive, denoted an anion receptor, to complex the fluoride ion; the pertinent innovation is the selection of tris(hexafluoroisopropyl) borate as a superior alternative to the prior anion receptor, which was tris(pentafluorophenyl) borate.

This work was done by William West of Caltech for NASA’s Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free online at www.techbriefs.com/tsp under the Physical Sciences category.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to

: Innovative Technology Assets Management JPL Mail Stop

202-2334800 Oak Grove Drive Pasadena, CA 91109-8099 (818) 354-2240 E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. Refer to NPO-42316, volume and number of this NASA Tech Briefs issue, and the page number.

This Brief includes a Technical Support Package (TSP).
Anion-Intercalating Cathodes for High-Energy-Density Cells

(reference NPO-42316) is currently available for download from the TSP library.

Don't have an account? Sign up here.