The Automated Adaptive Signal Processing (AASP) computer program extracts wind data from the outputs of Doppler-radar wind profilers (DRWPs). Unlike prior software used for this purpose, AASP does not rely on manual intervention to prevent a DRWP system from locking onto and tracking interfering signals (e.g., signals from side lobes of radar beams). AASP identifies interference signals in the range-gated spectra produced by a DRWP, then tracks the height- and time-continuous atmospheric signal in each radar beam. AASP then combines the radial velocity components from three or five beams and computes the horizontal and vertical wind components. AASP produces high-quality wind profiles within a single radar cycle, without need for averaging for quality control. It also calculates an indication of the level of confidence with each wind estimate. The single-cycle capability enables users to detect temporal shifts in wind earlier and with greater confidence than was possible by use of prior software. AASP comprises two coupled software subsystems: (1) a subsystem that implements signal-processing algorithms and (2) a subsystem that provides a quality-control capability and that generates displays of spectra, of wind estimates, and of the performances of the DRWP hardware.

This work was done by Robin Schumann, Ed Toughlian, Greg Taylor, and Erik Magnuson of ENSCO, Inc., for Kennedy Space Center. For more information, contact the Kennedy Commercial Technology Office at 321-867-6224.