A general-purpose computer program for planning the actions of a spacecraft or other complex system has been augmented by incorporating a subprogram that reasons about uncertainties in such continuous variables as times taken to perform tasks and amounts of resources to be consumed. This subprogram computes parametric probability distributions for time and resource variables on the basis of user-supplied models of actions and resources that they consume. The current system accepts bounded Gaussian distributions over action duration and resource use. The distributions are then combined during planning to determine the net probability distribution of each resource at any time point. In addition to a full combinatoric approach, several approximations for arriving at these combined distributions are available, including maximum-likelihood and pessimistic algorithms. Each such probability distribution can then be integrated to obtain a probability that execution of the plan under consideration would violate any constraints on the resource. The key idea is to use these probabilities of conflict to score potential plans and drive a search toward planning low-risk actions. An output plan provides a balance between the user's specified averseness to risk and other measures of optimality.

This program was written by Steven Schaffer, Bradley Clement, and Steve Chien of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free online at www.techbriefs.com/tsp under the Software category.

This software is available for commercial licensing. Please contact Karina Edmonds of the California Institute of Technology at (626) 395-2322. Refer to NPO-42152.


This Brief includes a Technical Support Package (TSP).
Probabilistic Reasoning for Robustness in Automated Planning

(reference NPO-42152) is currently available for download from the TSP library.

Don't have an account? Sign up here.