A common belief among engineers is that in order to get the best performance, a PC-based data acquisition module must plug into the PCI bus. Properly implemented, however, a data acquisition module can use the PC’s USB port to pump data into a PC as fast as PCI-based cards. The keys to achieving this performance are a hardware USB interface on the module, and optimized driver software for the host system.
Because the Universal Serial Bus (USB) was originally developed to replace low-speed peripheral cabling, many engineers fail to see its potential as a high-performance data acquisition channel. The original USB specification did offer only a modest bit rate, but USB 2.0 handles 480 Mbits/second, fast enough to handle 60 Mbytes/second data streams. Even with the protocol reserving some bandwidth for interrupts and control transfers, and the header overhead on data packets, the bus can easily sustain more than 10 Mbytes/second of continual data transfer. This is fast enough to support extremely high-performance data acquisition (DAQ) hardware.
Utilizing the USB as a data portal provides many advantages for data acquisition. For one, the external connector and plug-and-play software installation of USB peripherals means that users do not have to open their PC and set up and configure the hardware in order to begin acquiring data. The USB-based DAQ module sets itself up upon installation. Addressing and other potential resource utilization conflicts resolve automatically.
The USB also has electronic advantages. The bus can power the peripheral (within limits) so that the DAQ system does not need its own power source. This further eases system installation and use, and has the added benefit of removing the sensitive A/D converters and amplifiers from the electrically noisy environment inside the PC’s housing. Unlike PCI plug-in cards, a USB-based DAQ module is easily shielded for achieving high-bit-level resolution.
Implementing the DAQ System
The benefits of USB operation are compelling for a DAQ system, but implementing the system does require care in order to ensure a high-bandwidth connection. Engineers often assume that high-data-rate systems should use the USB data transfer mode with the highest raw bandwidth and least overhead penalty: isochronous transfer. But isochronous transfers are a “best-effort” channel. Data that suffers from errors cannot be resent.
There are two approaches to dealing with the uncertainty in the instantaneous bandwidth available for bulk transfers. One is to keep the data rate low in order to maximize the likelihood that bandwidth available will always exceed the DAQ module’s data rate. This is the simpler approach, but results in severe underutilization of USB’s potential. The alternative approach is for the DAQ module to incorporate FIFO buffering to hold data while waiting for the bus to become available. Dual buffers are needed in the module — one to fill while the other is emptying. The larger the buffers, the more tolerant the module becomes of shifting bandwidth availability, and the closer its data rate can approach the average bandwidth available.
In addition to the FIFO buffering on the DAQ module, the software drivers should allocate buffer space in the host system at the receiving end. This decouples the host system’s data processing activity from the data acquisition so that neither activity can delay or impede the other’s performance.
Achieving Maximum Data Speed
While FIFO buffering maximizes the DAQ module’s ability to utilize the available bulk transfer bandwidth, it is not the only way to improve the achievable speed on the USB. The module’s USB interface hardware and latency in the host controller software can seriously constrain achievable USB data rates if not implemented with high performance in mind. For the interface hardware, using a state-machine hardware controller optimized for 512-byte transfers (the largest bulk transfer packet) produces a much faster interface than the use of a software-dependent USB microcontroller.
These are not simply theoretical suggestions. USB data acquisition modules can achieve a data rate of 800k samples/ second on six simultaneous channels, and 2M samples/second on two simultaneous channels. The potential exists to take USB-based data acquisition to even higher levels with additional buffering and driver optimization.
But a high data rate is not all that is required of a high-performance DAQ module. Issues such as accuracy, aperture uncertainty, and noise levels are equally important. Further, the inclusion of additional capabilities such as digital I/O lines, counter/timers, analog outputs, and quadrature encoders can greatly increase the utility of a DAQ module.
Accuracy in a high-performance DAQ module has many facets. The most obvious is the A/D converter’s resolution. Accuracy also involves timing, especially in a multi-channel DAQ module. In order to properly compare and correlate sampled signals, it is important to know the relative timing of samples from one channel to the next. Most DAQ systems use a single A/D converter with a multiplexer front end to handle multiple channels. This results in each channel’s signal being sampled at a different time, forcing the use of interpolation to bring the signal data into temporal alignment, and resulting in relative timing errors or phase noise. Ideally, the samples for all channels should be made simultaneously to eliminate phase noise.
There are modules that do not use a multiplexer. Each channel has its own track-and-hold stage with an independent successive-approximation A/D converter. The converters use a common clock, and the track-and-hold stages have a common trigger, so that the modules offer true simultaneous sampling. The channels have an aperture delay of 35 nseconds, with uncertainty (aperture jitter) of 1 nsecond, and channels are well matched so that there is less than 5-nsecond difference between channels. This virtually eliminates phase noise in data.
Supporting these additional signal lines means that the data channel must be fast enough to handle the additional signal and control bits without impacting the module’s sampling rate. The USB is fast enough. It has proven that it can provide the needed capacity, and offers significant ease-of-use benefits. There is no longer a need to pry open a PC to assemble a high-performance DAQ system. Simply plug one in to the USB port.
This article was contributed by Data Translation, Marlboro, MA. For more information, Click Here .