The Department of Energy’s (DOE) Pacific Northwest National Laboratory (PNNL) in Richland, WA, has been operated by Battelle and its predecessors since the lab’s inception in 1965. For more than 50 years, PNNL has advanced the frontiers of science and engineering, making fundamental scientific discoveries and solving problems in energy, the environment, and national security.

The Glyph™ 3D headset display was commercialized for military applications to improve the sight of soldiers in dark battlefields, and to aid with piloting armored or unmanned vehicles.

PNNL is the DOE’s premier chemistry, environmental sciences, and data analytics national laboratory, and is home to the Environmental Molecular Sciences Laboratory (EMSL), one of DOE’s scientific user facilities. PNNL researchers provide national leadership in four areas: deepening our understanding of climate science, inventing the future power grid, preventing nuclear proliferation, and speeding environmental remediation. Other areas in which PNNL makes important contributions include energy storage, micro-bial biology, and cybersecurity.

Transformational Science

Technologies developed by PNNL researchers have had a far-reaching effect on our daily lives, and on advancing science. In 1969, for example, PNNL was the only Northwest organization chosen by NASA to analyze lunar material collected from the first Apollo mission to the Moon.

Biologists and materials scientists created a porous substance called Void Metal Composite (VMC) in 1971. Its ability to develop a “living union” between bone and prosthetic devices by bone ingrowth enabled VMC to anchor artificial teeth and femoral head prostheses. It also could be surgically implanted and used as a splint for badly broken bones.

Manny is a robotic mannequin that is so humanlike, it sweats. It was developed for the U.S. Army to test protective clothing.

In 1974, PNNL invented a technique called optical digital recording that stores information as a track of dots about one micron in diameter. This innovation served as the critical design element for compact discs and players manufactured worldwide.

The award-winning Portable Blood Irradiator developed at PNNL in 1983 was the first fully portable device for continuous irradiation of blood. The device showed promise in suppressing early rejection of organ and tissue transplants by continuously irradiating a patient’s blood. And in 1988, engineers developed a $2.5 million robotic mannequin — so humanlike, it sweats — for the U.S. Army to test protective clothing.

In 1989, engineers developed a millimeter-wave holographic imaging system that rapidly identified hidden weapons, explosives, and other contraband — even plastic, ceramic, and other non-metallic weapons — through clothing. Today, the technology is used in personnel scanning systems at airports around the world, and has been adapted for other uses including within retail clothing stores.

RubberCycle™ addressed the problem of what to do with stockpiled tires. In 1996, scientists invented a bioprocess using sulfur-loving microorganisms that change the surface chemistry of waste tire rubber, enabling it to bond with virgin rubber. This cost-effective method of producing vulcanized rubber products such as tires performed better than those made of new rubber alone.

In 1999, scientists developed a new way to make plastic virtually impermeable so it could be used to replace glass in new display technologies. Using plastics instead of glass would allow laptop computer monitors, cellphones, and other flat-panel displays to be thinner, more rugged, and lighter-weight. The product is incorporated into many commercial products.

The Glyph™ is a three-dimensional headset display that contains PNNL-developed virtual retinal technology that’s easier to read. The technology, developed in 2014, was commercialized for military applications to improve the sight of soldiers in dark battlefields, and aid with piloting armored or unmanned vehicles. It also shows promise for applications such as surgery and virtual training.

Battelle developed the Remote Ordnance Neutralization System — a stair-climbing, off-road vehicle with robotic control, fiber optic communications system, and remote operator control system.

Today, PNNL researchers are making discoveries that change the way we view the world. In climate science, for example, PNNL is studying how pollution affects storm clouds, and the regional impacts of climate change on snowpack, which in turn affects agriculture and hydroelectric power production. Terrestrial ecosystems and the role of microbes in the carbon cycle also are being investigated.

Expertise in materials science, catalysis, and high-performance computing enables PNNL to develop new, large-scale energy-storage solutions that are essential for incorporating wind and solar into the electric grid. At the same time, the lab is leading a national effort that will transform the U.S. electric grid in support of a cleaner, more energy-efficient economy. The recently opened Systems Engineering Laboratory will house these activities and provide a state-of-the-art facility for collaborating with industry and others.

For more than four decades, PNNL has advanced the science of nuclear materials analysis and ultra-trace detection. The capability enables extraction of information from the tiniest amount of radioactive material. PNNL scientists were able to provide critical analysis and advice to the U.S. and Japanese governments in the hours following the Fukushima disaster in 2011. The same expertise is being exploited by the fundamental physics community in its search for dark matter.

PNNL scientists and engineers move their ideas out of the laboratory and into the commercial world, often in partnership with companies that license the technology. In all, PNNL people or technologies have found their way into more than 150 companies.

Scientific Facilities

Ceralite materials, made from continuous fibers of metallic oxides or other low-density materials, were developed for space shuttle flights to significantly reduce the mass and weight of heat radiators, piping, and other spacecraft components.

PNNL offers scientific researchers access to unique equipment housed in state-of-the-art facilities as well as on-site experts to help visiting researchers take advantage of and make best use of the capabilities. Scientists also can collaborate with PNNL scientists and engineers who can help advance scientific research.

Applied Process Engineering Laboratory (APEL) – This eastern Washington technology business startup facility, sponsored in part by PNNL, provides engineering and manufacturing-scale space, and chemical, biological, and electronic laboratories and equipment for developing, validating, and commercializing new products. Entrepreneurs, engineers, and scientists can access this facility.

Bioproducts, Sciences, and Engineering Laboratory (BSEL) – Located on the Washington State University (WSU) Tri-Cities campus in Richland, BSEL is a joint effort between WSU and PNNL. Researchers are developing technology for converting low-value agricultural byproducts and residues into value-added chemicals for products like plastics, solvents, fibers, pharmaceuticals, and fuel additives.

Marine Sciences Laboratory (MSL) – The Marine Sciences Laboratory Sequim Marine Research Operations is located on Sequim Bay in Washington’s Puget Sound. The lab offers various research capabilities in ecotoxicology, analytical chemistry, wetland and coastal ecology, fisheries, ocean processes, remote sensing, biotechnology, and remediation.

Researchers in PNNL’s Engine Emissions Laboratory investigate catalysts, particulate traps, and other methods for reducing diesel engine emissions.

Microproducts Breakthrough Institute (MBI) – The MBI is a collaboration between PNNL and Oregon State University. The facility, located on the Hewlett-Packard campus in Oregon, is tailored with capabilities focused for fabrication, modeling, and testing of nano- and microchannel-based technologies. The mission of the MBI is to develop and commercialize these technologies for energy, medical, environmental, and national security applications.

Physical Sciences Facility Research Complex – At the Interdiction Technology and Integration Laboratory, researchers integrate, test, and advance threat detection systems that keep the nation secure by deterring acts of terrorism. At the Materials Science & Technology Laboratory, researchers develop and test high-performance materials used in next-generation energy, construction, and transportation technologies and systems.

Radiation Detection Laboratory – In the Radiation Detection Laboratory, PNNL scientists develop and apply radiation detection methods needed for identifying weapons of mass destruction and terrorist activities, and in support of international treaties and agreements.

Shallow Underground Laboratory – Located 39 feet underground, this laboratory houses some of the world’s most sensitive radiation detection systems, and supports ultra-low-background research and development for environmental, national security, and fundamental physics.

Radiochemical Processing Laboratory (RPL) – The RPL is a scientific facility funded by DOE to create and implement innovative processes for environmental cleanup and the beneficial use of radioactive materials. These processes include those to advance the cleanup of radiological and hazardous wastes, the processing and disposal of nuclear fuels, and the production and delivery of medical isotopes.

A portable detector using neutron-sensitive scintillating glass fibers can be easily transported by a single person, and rapidly deployed to establish a radiation detection capability for nuclear materials and radiological weapons of mass destruction.

Systems Engineering Building (SEB) – The new SEB provides state-of-the-art laboratory space and equipment that will further basic and applied research in electricity markets, generation, transmission, distribution, and end use, including buildings-grid integration. The 24,000-square-foot building houses some of PNNL’s power grid research. The Electricity Infrastructure Operations Center (EIOC), located within the SEB, brings together industry-leading software, real-time grid data, and advanced computation into a fully capable control room. Shaped with input from utilities, technology vendors, and researchers across the Northwest, the EIOC serves as a unique platform for researching, developing, and deploying technologies to better manage and control the grid. The new technologies developed here will be transferable across the industry, and address the national need for a more reliable and effective electricity grid.

William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) – The EMSL is a DOE national user facility currently shared and used by researchers from around the world. Research focuses principally on developing a molecular-level understanding of the physical, chemical, and biological processes that underlie the most critical environmental issues facing DOE.

Work with PNNL

As technology continues to drive the global marketplace, innovation is increasingly vital to competitiveness in many industry sectors. Pacific Northwest National Laboratory’s world-class research often results in cutting-edge, patented intellectual property. PNNL actively pursues business opportunities for those inventions with the greatest potential to positively impact people’s lives.

FOR MORE INFORMATION

Watch a video about the lab on Tech Briefs TV here. For technology licensing opportunities, contact Peter Christensen, Deputy Director for Technology Commercialization, at This email address is being protected from spambots. You need JavaScript enabled to view it.; 509-371-6159. Visit here  to learn more.


Tech Briefs Magazine

This article first appeared in the December, 2017 issue of Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.