NASA is planning a number of Space Exploration, Earth Observation and Space Science missions where Ka-band solid-state power amplifiers (SSPAs) could have a role. Monolithic microwave integrated circuit (MMIC) based SSPAs with output powers on the order of 10 W at Ka-band frequencies would be adequate to satisfy the data transmission rate requirements at the distances involved. MMICs are a type of integrated circuit fabricated on a GaAs wafer, which operates at microwave frequencies and performs the function of signal amplification. The highest power Ka-band (31.8 to 32.3 GHz) SSPA to have flown in space had an output power of 2.6 W with an overall efficiency of 14.3 percent. This SSPA was built around discrete GaAs pHEMT (high electron mobility transistor) devices and flew aboard the Deep Space One spacecraft. State-of-the-art GaAs pHEMT-based MMIC power amplifiers (PAs) can deliver RF power at Ka-band frequencies anywhere from 3 W with a power added efficiency (PAE) of 32 percent to 6W with a PAE of 26 percent. However, to achieve power levels higher than 6 W, the output of several MMIC PAs would need to be combined using a high-efficiency power combiner. Conventional binary waveguide power combiners, based on shortslot and magic-T circuits, require MMIC PAs with identical amplitude and phase characteristics for high combining efficiency. However, due to manufacturing process variations, the output powers of the MMIC PAs tend to be unequal, and hence the need to develop unequal power combiners.

Transparent view of Asymmetric Combiner showing port configuration and relative orientation of rod, post, and iris.
A two-way asymmetric magic-T based power combiner for MMIC power amplifiers, which can take in unequal inputs, has been successfully designed, fabricated, and characterized over NASA’s Deep Space Network (DSN) frequency range of 31.8 to 32.3 GHz. The figure is a transparent view of the asymmetric combiner that shows the 4-port configuration and the internal structure. The rod, post, and iris are positioned by design to achieve the desired asymmetric power ratio, phase equality, and port isolation. Although the combiner was designed for an input power ratio of 2:1, it can be custom-designed for any arbitrary power ratio and frequency range. The manufactured prototype combiner was precision machined from aluminum and is less than 2 in.3 (5 cm3). Previously investigated rectangular waveguide unequal power combiners were based on shunt/series coupling slots, E-plane septums, or H-plane T-junctions. All the prior art unequal power combiners operated at or below X-band (10 GHz) frequencies and were primarily used in the feed network of antenna arrays. The only reported asymmetric magic-T was developed as a 2:1 power divider for operation at a much lower frequency, around 500 MHz.

The measured power ratio when tested as a power divider was very close to 2 and the phase balance was within 2.6°, resulting in near ideal performance. When tested as a combiner using two MMIC SSPAs with a 2:1 power output ratio, an efficiency greater than 90 percent was demonstrated over the 500 MHz DSN frequency range. The return loss at the combiner output port (1) was greater than 18 dB and the input port (2 and 3) isolation was greater than 22 dB. The results show the asymmetric combiner to be a good candidate for high-efficiency power combining of two or more SSPAs needed to achieve the 6 to 10 W required by space communications systems of future NASA missions.

This work was done by E.G. Wintucky, R.N. Simons, and J.C. Freeman of Glenn Research Center and C.T. Chevalier of QinetiQ North America Corp.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steven Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18590-1.


NASA Tech Briefs Magazine

This article first appeared in the July, 2011 issue of NASA Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.