The front-to-back interface between microstrip and CPW (coplanar waveguide) typically requires complex fabrication or has high radiation loss. The microwave crossover typically requires a complex fabrication step. The prior art in microstrip-CPW transition requires a physical vias connection between the microstrip and CPW line on a separate layer. The via-less version of this transition was designed empirically and does not have a close form solution. The prior art of the micro wave crossover requires either additional substrate or wire bond as an air bridge to isolate two microwave lines at the crossing junction. The disadvantages are high radiation loss, no analytical solution to the problem, lengthy simulation time, and complex fabrication procedures to generate air bridges or via. The disadvantage of the prior crossover is a complex fabrication procedure, which also affects the device reliability and yield.

This microstrip-CPW transition is visualized as two microstrip-slotline transitions combined in a way that the radiation from two slotlines cancels each other out. The invention is designed based on analytical methods; thus, it significantly reduces the development time. The crossover requires no extra layer to cross two microwave signals and has low radiation loss. The invention is simple to fabricate and design. It produces low radiation loss and can be designed with low insertion loss, with some tradeoff with signal isolation.

The microstrip-CPW transition is used as an interface to connect between the device and the circuit outside the package. The via-less microwave crossover is used to allow two signals to cross without using an extra layer or fabrication processing step to enable this function. This design allows the solution to be determined entirely though analytical techniques. In addition, a planar via-less microwave crossover using this technique was proposed. The experimental results show that the proposed crossover at 5 GHz has a minimum isolation of 32 dB. It also has low in-band insertion loss and return loss of 1.2 dB and 18 dB, respectively, over more than 44 percent of bandwidth at room temperature.

This microstrip-CPW transition requires the microstrip line to be split into two sections. Each section is connected to a microstrip quarter-wavelength openended stub. A slotline is also placed perpendicular to the microstrip section. The slot is connected to a grounded-end quarter-wavelength slotline and generates a microstrip-slotline transition. When two of these sections are placed in parallel and with the microstrip section combined at transition, a microstrip-CPW transition is formed. The slotline radiation is suppressed as two slots are excited with the electric field in an opposite direction, which cancels the radiation in far field. The invention on the crossover consists of the invented microstrip-CPW transitions combined back-to-back and a microstrip low-pass filter. One signal is crossed through to the microstrip layer, while the other signal is crossed through the CPW line located on the ground plane of the microstrip line. The microstrip low-pass filter produces a narrow line at the crossing point to enhance the system isolation. It also produces broadband response in the operating frequency band.

The microstrip-CPW transition allows a microwave signal to travel from microstrip line to CPW line with low radiation loss. The crossover allows two microwave signals to cross with minimal parasitic coupling.

This work was done by Thomas Stevenson, Kongpop U-Yen, Edward Wollack, Samuel Moseley, and Wen-Ting Hsieh of Goddard Space Flight Center. GSC-15705-1


NASA Tech Briefs Magazine

This article first appeared in the November, 2011 issue of NASA Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.