An electrical connector was developed that is tolerant of the presence of lunar dust. Novel features of the connector include the use of a permeable membrane to act both as a dust barrier and as a wiper to limit the amount of dust that makes its way into the internal chamber of the connector. The development focused on the Constellation lunar extra-vehicular activity (EVA) spacesuit’s portable life support system (PLSS) battery recharge connector; however, continued research is applying this technology to other lunar surface systems such as lunar rover subsystems and cryogenic fluid transfer connections for in-situ resource utilization (ISRU) applications.

Lunar dust has been identified as a significant and present challenge in future exploration missions. In addition to posing contamination and health risks for human explorers, the interlocking, angular nature of lunar dust and its broad grain size distribution make it particularly harmful to mechanisms with which it may come into contact. All Apollo lunar missions experienced some degree of equipment failure because of dust, and it appears that dust accumulation on exposed material is unavoidable and difficult to reverse. Both human EVA and ISRU activities are on the mission horizon and are paramount to the establishment of a permanent human base on the Moon. Reusable and dusttolerant connection mechanisms are a critical component for mission success.

The need for dust-tolerant solutions is also seen in utility work and repair, mass transit applications, construction, mining, arctic and marine environments, diving (search and rescue), and various operations in deserts, where dust or sand clogging and coating different mechanisms and connections may render them difficult to operate or entirely inoperable.

This work was done by Jason Herman, Shazad Sadick, and Dustyn Roberts of Honeybee Robotics Spacecraft Mechanisms Corporation for Glenn Research Center.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18400-1.


NASA Tech Briefs Magazine

This article first appeared in the February, 2010 issue of NASA Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.