Rectangular-waveguide inserts that are made of non-ferromagnetic metals and are sized and shaped to function as notch filters have been conceived as reference standards for use in the rectangular- waveguide method of characterizing materials with respect to such constitutive electromagnetic properties as permittivity and permeability. Such standards are needed for determining the accuracy of measurements used in the method, as described below.

The Metal Rectangular-Waveguide Insert is sized and shaped to fit the waveguide cross-section and to act as a band-stop filter having a notch frequency of about 9 GHz. The particular waveguide cross sectional dimensions, known in the industry as “WR-90,” are for a nominal frequency range of 8.2 to 12.4 GHz.
In this method, a specimen of a material to be characterized is cut to a prescribed size and shape and inserted in a rectangular-waveguide test fixture, wherein the specimen is irradiated with a known source signal and detectors are used to measure the signals reflected by, and transmitted through, the specimen. Scattering parameters [also known as “S” parameters (S11, S12, S21, and S22)] are computed from ratios between the transmitted and reflected signals and the source signal. Then the permeability and permittivity of the specimen material are derived from the scattering parameters. Theoretically, the technique for calculating the permeability and permittivity from the scattering parameters is exact, but the accuracy of the results depends on the accuracy of the measurements from which the scattering parameters are obtained. To determine whether the measurements are accurate, it is necessary to perform comparable measurements on reference standards, which are essentially specimens that have known scattering parameters.

To be most useful, reference standards should provide the full range of scattering-parameter values that can be obtained from material specimens. Specifically, measurements of the backscattering parameter (S11) from no reflection to total reflection and of the forward-transmission parameter (S21) from no transmission to total transmission are needed. A reference standard that functions as a notch (band-stop) filter can satisfy this need because as the signal frequency is varied across the frequency range for which the filter is designed, the scattering parameters vary over the ranges of values between the extremes of total reflection and total transmission.

A notch-filter reference standard in the form of a rectangular-waveguide insert that has a size and shape similar to that of a material specimen is advantageous because the measurement configuration used for the reference standard can be the same as that for a material specimen. Typically a specimen is a block of material that fills a waveguide cross-section but occupies only a small fraction of the length of the waveguide. A reference standard of the present type (see figure) is a metal block that fills part of a waveguide cross section and contains a slot, the long dimension of which can be chosen to tailor the notch frequency to a desired value. The scattering parameters and notch frequency can be estimated with high accuracy by use of commercially available electromagnetic-field-simulating software. The block can be fabricated to the requisite precision by wire electrical-discharge machining. In use, the accuracy of measurements is determined by comparison of (1) the scattering parameters calculated from the measurements with (2) the scattering parameters calculated by the aforementioned software.

This work was done by Kevin M. Lambert and Carol L. Kory of Analex Corp. for Glenn Research Center.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-18137-1.

NASA Tech Briefs Magazine

This article first appeared in the October, 2009 issue of NASA Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.