Progress has been achieved in continuing research directed toward increasing the wear resistance and enhancing the self- lubrication properties of chemical-vapor-deposited (CVD) diamond films. Such films are potentially useful as friction- and wear-reducing coats on sliding mechanical components (e.g., seals, gears, and journal bearings). A major issue that has been addressed in this research is the variation of the friction and wear properties of CVD diamond with environment: In air, CVD diamond exhibits a low coefficient of friction and high resistance to wear; in vacuum, it exhibits a high coefficient of friction and low resistance to wear. In three experimental studies, it was found that friction and wear of CVD diamond films in both vacuum and air can be reduced by use of suitable surface treatments.
The second study was similar to the first study. Fine-grained CVD diamond films were modified by implantation of, variously, carbon ions at a kinetic energy of 60 keV or nitrogen ions at a kinetic energy of 35 keV. In both cases, the implantation resulted in the formation of amorphous, non-diamond carbon surface layers
The subject matter of the first and second studies overlaps with that of a prior study reported in “Ion-Beam-Deposited DLC Coatings on Fine-Grain CVD Diamond” (LEW-16564), NASA Tech Briefs, Vol. 22, No. 7 (July 1998), page 62. The third study addressed the issue of a friction- and wear-resistant couple of materials; that is, a pair of materials that exhibit low friction and low wear when slid against each other. This study included ultrahigh-vacuum tests in which CVD-diamond-tipped pins were slid against a disk coated with cubic boron nitride films. The wear rate of the boron nitride films was found to be acceptably low (of the order of 10–6 mm3/N⋅m), the wear rate of the diamond films was found to be much lower, and the coefficient of friction was found to be very low (of the order of 0.02).
This work was done by Kazuhisa Miyoshi of Glenn Research Center.
Inquiries concerning rights for the commercial use of this invention should be addressed to
NASA Glenn Research Center,
Commercial Technology Office,
Attn: Steve Fedor,
Mail Stop 4–8,
21000 Brookpark Road,
Cleveland, Ohio 44135.
Refer to LEW-17150.

NASA Tech Briefs Magazine
This article first appeared in the August, 2002 issue of NASA Tech Briefs Magazine.
Read more articles from the archives here.