A paper presents a study in which rates of release of small particles from Mars lander spacecraft into the Martian atmosphere were estimated from first principles. Because such particles can consist of, or be laden with, terrestrial microbes, the study was undertaken to understand their potential for biological contamination of Mars. The study included taking account of forces and energies involved in adhesion of particles and of three mechanisms of dislodgement of particles from the surface of a Mars lander: wind shear, wind-driven impingement of suspended dust, and impingement of wind-driven local saltating sand particles. Wind shear was determined to be effective in dislodging only particles larger than about 10 microns and would probably be of limited interest because such large particles could be removed by pre-flight cleaning of the spacecraft, and their number on the launched spacecraft would thus be relatively small. Dislodgement by wind-driven dust was found to be characterized by an adhesion half-life of the order of 10,000 years — judged to be too long to be of concern. Dislodgement by saltating sand particles, including skirts of dust devils, was found to be of potential importance, depending on the sizes of the spacecraft-attached particles and characteristics of both Mars sand-particle and spacecraft surfaces.

This work was done by Josette Bellan and Kenneth Harstad of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.techbriefs.com/tsp under the Mechanics category. NPO-42687



This Brief includes a Technical Support Package (TSP).
Document cover
On Release of Microbe-Laden Particles From Mars Landers

(reference NPO-42687) is currently available for download from the TSP library.

Don't have an account? Sign up here.