The miniscule movement of a single particle only one-tenth the diameter of a bacterium can induce sustained vibrations in an entire mechanical device that is 50 times larger. Using the interplay among light, electrons on the surface of metals, and heat, researchers created a plasmomechanical oscillator (PMO), so named because it tightly couples plasmons — the collective oscillations of electrons at the surface of a metal nanoparticle — to the mechanical vibrations of the much larger device in which it is embedded.

The entire system, no bigger than a red blood cell, has myriad technological applications. It can miniaturize mechanical oscillators, improve communication systems that depend on the modulation of light, dramatically amplify extremely weak mechanical and electrical signals, and create ultra-sensitive sensors for the tiny motions of nanoparticles.

The device consists of a gold nanoparticle, about 100 nanometers in diameter, embedded in a tiny cantilever made of silicon nitride. An air gap lies sandwiched between these components and an underlying gold plate; the width of the gap is controlled by an electrostatic actuator — a thin gold film that sits atop the cantilever and bends toward the plate when a voltage is applied. The nanoparticle acts as a single plasmonic structure that has a natural, or resonant, frequency that varies with the size of the gap, just as tuning a guitar string changes the frequency at which the string reverberates.

When a light source — in this case, laser light — shines on the system, it causes electrons in the resonator to oscillate, raising the temperature of the resonator. This sets the stage for a complex interchange among light, heat, and mechanical vibrations in the PMO, endowing the system with several key properties.

By applying a small, direct-current voltage to the electrostatic actuator that squeezes the gap shut, the optical frequency at which the resonator vibrates and the intensity of the laser light the system reflects were altered. Such optomechanical coupling is highly desirable because it can modulate and control the flow of light on silicon chips, and shape the propagation of light beams traveling in free space.

A second property relates to the heat generated by the resonator when it absorbs laser light. The heat causes the thin gold film actuator to expand. The expansion narrows the gap, decreasing the frequency at which the embedded resonator vibrates. Conversely, when the temperature decreases, the actuator contracts, widening the gap and increasing the frequency of the resonator.

Crucially, the force exerted by the actuator always kicks the cantilever in the same direction in which the cantilever is already traveling. If the incident laser light is powerful enough, these kicks cause the cantilever to undergo self-sustaining oscillations with amplitudes thousands of times larger than the oscillations of the device due to the vibration of its own atoms at room temperature.

If the electrostatic actuator delivers a small mechanical force to the PMO that varies in time while the system undergoes these self-sustaining oscillations, the PMO can lock onto that tiny variable signal and greatly amplify it.

For more information, contact Ben P. Stein at This email address is being protected from spambots. You need JavaScript enabled to view it.; 301-975-2763.


Tech Briefs Magazine

This article first appeared in the June, 2020 issue of Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.