A document discusses the use of ultraviolet spectroscopy and imaging for the non-destructive evaluation of the degree of cure, aging, and other properties of resin-based composite materials. This method can be used in air, and is portable for field use. This method operates in reflectance, absorbance, and luminescence modes.

The ultraviolet source is used to illuminate a composite surface of interest. In reflectance mode, the reflected response is acquired via the imaging system or via the spectrometer. The spectra are analyzed for organic compounds (conjugated organics) and inorganic compounds (semiconducting band-edge states; luminescing defect states such as silicates, used as adhesives for composite aerospace applications; and metal oxides commonly used as thermal coating paints on a wide range of spacecraft). The spectra are compared with a database for variation in conjugation, substitution, or length of molecule (in the case of organics) or band edge position (in the case of inorganics).

This approach is useful in the understanding of material quality. It lacks the precision in defining the exact chemical structure that is found in other materials analysis techniques, but it is advantageous over methods such as nuclear magnetic resonance, infrared spectroscopy, and chromatography in that it can be used in the field to assess significant changes in chemical structure that may be linked to concerns associated with weaknesses or variations in structural integrity, without disassembly of or destruction to the structure of interest.

This work was done by Betsy Pugel of Goddard Space Flight Center.


NASA Tech Briefs Magazine

This article first appeared in the June, 2008 issue of NASA Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.