A research group including members from Tokyo Institute of Technology (Tokyo Tech) and Japan Society for the Promotion of Science has developed a real-time, fiber-optic, distributed sensing system for strain and temperature. The system requires light injection from only one end of the fiber, and can achieve a sampling rate of 100 kHz, an improvement of more than 5,000 times the conventional rate.

Tracking of a propagating mechanical wave shows the measured temporal variation of the strain distribution.

Aging degradation and seismic damage of civil infrastructure pose a serious problem. One promising technology for monitoring the condition of structures is optical fiber sensing. By embedding long optical fibers into a structure, strain and temperature distributions along the fibers can be detected. Among the various types of optical fiber sensors, distributed strain and temperature sensors based on Brillouin scattering have received much attention due to their high sensitivity and stability. In particular, Brillouin optical correlation-domain reflectometry (BOCDR), which operates based on the correlation control of continuous light waves, is known to be an intrinsically one-end-access distributed sensing technique with high spatial resolution (<1 cm). However, the highest sampling rate reported for BOCDR was 19 Hz, resulting in a relatively long total time of distributed measurement (from several tens of seconds to several minutes).

In all Brillouin sensors, the strain and temperature dependence of the Brillouin frequency shift (BFS) is exploited to derive strain and temperature. In conventional BOCDR, the BFS is obtained by performing a frequency sweep over the whole Brillouin gain spectrum (BGS) using an electrical spectrum analyzer. Thus, the sweep speed of the spectrum analyzer limits the sampling rate to 19 Hz. By instead sweeping the frequency spectrum using a voltage-controlled oscillator, the researchers achieved a higher-speed acquisition.

Deriving the BFS from the BGS still limited the sampling rate. To speed up the system further, the BGS was converted into a synchronous sinusoidal waveform using a bandpass filter, allowing the BFS to be expressed as its phase delay. Then, using an exclusive-OR logic gate and a low-pass filter, the phase delay was subsequently converted into a voltage, which was directly measured.

A strain sampling rate of up to 100 kHz was experimentally verified by detecting a 1-kHz dynamic strain applied at an arbitrary position along the fiber. When distributed measurements were performed at 100 points with 10 times averaging, a repetition rate of 100 Hz was verified by tracking a mechanical wave propagating along the fiber (see figure). Thus, the researchers achieved one-end-access, real-time distributed Brillouin sensing.

The sensing system is anticipated to be of benefit in monitoring the health of various structures, ranging from buildings and bridges to windmill blades and aircraft wings. The system also has potential applications in robotics, acting as electronic “nerves” for detecting touch, distortion, and temperature change.

For more information, visit here .


NASA Tech Briefs Magazine

This article first appeared in the May, 2017 issue of NASA Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.