Simple, passive instruments have been developed for measuring the exposure of material specimens to vacuum ultraviolet (VUV) radiation from the Sun. Each instrument contains a silicon photodiode and a coulometer. The photocharge generated in the photodiode is stored in the coulometer. The accumulated electric charge measured by use of the coulometer is assumed to be proportional to the cumulative dose of VUV radiation expressed in such convenient units as equivalent Sun hours (ESH) [defined as the number of hours of exposure to sunlight at normal incidence]. Intended originally for use aboard spacecraft, these instruments could also be adapted to such terrestrial uses as monitoring the curing of ultraviolet-curable epoxies.

This Simple, Passive Instrument measures the dosage of ultraviolet light in the pass wavelength band of its filter.

Each instrument includes a photodiode and a coulometer assembly mounted on an interface plate (see figure). The photodiode assembly includes an aluminum housing that holds the photodiode, a poly (tetrafluoroehylene) cosine receptor, and a narrow-band optical filter. The cosine receptor ensures that the angular response of the instrument approximates the ideal angular response (proportional to the cosine of the angle of incidence). The filter is chosen to pass the ultraviolet wavelength of interest in a specific experiment.

The photodiode is electrically connected to the coulometer. The factor of proportionality between the charge stored in the coulometer and ultraviolet dosage (in units of ESH) is established, prior to use, in calibration experiments that involve the use of lamps and current sources traceable to the National Institute of Standards and Technology.

This work was done by Jason A. Vaughn of Marshall Space Flight Center and Perry Gray of Micro Craft, Inc. This invention is owned by NASA, and a patent application has been filed. For further information, contact Sammy Nabors, MSFC Commercialization Assistance Lead, at (256) 544-5226 or This email address is being protected from spambots. You need JavaScript enabled to view it. . Refer to MFS-31316-1.

NASA Tech Briefs Magazine

This article first appeared in the September, 2004 issue of NASA Tech Briefs Magazine.

Read more articles from the archives here.