“By eliminating photons that aren’t included in PAR, you’re able to reduce power and heat and still exceed the performance of high-pressure sodium lamps,” Yorio says.

Wells points out that by reducing heat, LEDs also reduce the need for air conditioning, further saving energy. And they far outlast alternatives. So despite a higher initial cost, he says, they save money in the long run.

LED-based grow lights cost about $1,000 less over five years than comparable high-pressure sodium lamps, which have to be replaced around every six months, Yorio estimates.

He notes that LEDs are also much safer than all other electric lighting alternatives.

As its first products became available in early 2015, BIOS found that the biggest agricultural market was in the cannabis farming industry that is gradually becoming legalized. An emerging movement to put food production closer to end consumers is also contributing to the demand for grow lights, Yorio says. “There’s a very strong movement for indoor farming.”

In human lighting, Soler says, the lighting industry has focused on deep blue frequencies to induce alertness. More recent research, however, he says, shows that light on the edge of blue and green is most effective at inducing both melatonin suppression and pupil constriction, and traditional LEDs have relatively low output in that range. Further research is showing that the deep blue frequencies commonly used in the industry may cause oxidative stress in the eye.

Robert Soler, vice president of human biological technologies and research at BIOS Lighting, works on an LED lighting array in his lab. Soler helped design LED lighting modules for the ISS as a NASA contractor.

BIOS’s SkyBlue lighting technology shifts peak outputs accordingly while producing true colors in a spectrum that closely imitates daylight, Soler says. “What BIOS does is use LEDs to pinpoint peak sensitivity and infuse that into the traditional white-light LED.”

In a world where most people spend most of the day indoors with little exposure to melatonin-suppressing sunlight, the disoriented circadian rhythm is a common problem, which BIOS aims to address, Soler says.

The company isn’t making its own human lighting products but is currently partnering with two other companies to put its technology in their products: Ledra Lighting specializes in small-scale decorative and recessed lighting for the home, while Pinnacle Architectural Lighting targets environments like offices, retail spaces, and hotel lobbies.

The technology has already made its way into the Pittsburgh Pirates’ clubhouse and bullpen.

“There’s a lot of interest in doing exactly what we’re doing, but we’re the first ones doing it,” Soler says.

BIOS has released two of its own agricultural lighting models. One is a high-output fixture designed for vertical agriculture, where plants grow on stacked shelves. It surpasses the photosynthetically active output of a 1,000-watt high-pressure sodium lamp using just 40 to 50 percent of the energy, and it spreads light uniformly across a specific area so it can hang close to the plants. The other model is designed to supplement sunlight in a greenhouse.

Both are informed by Yorio’s long experience with indoor farming at Kennedy during the time when NASA was making the switch to LED lighting. “Neil was there when all this was happening, but I think his real experience is in understanding plant lighting and horticulture, and really understanding plants as a whole and how to grow them,” says Ray Wheeler, who headed—and still heads—Advanced Life Support.

Soler’s work for NASA, meanwhile, provided him with a test bed for his technology and also stretched its limitations. The project required the LEDs to give off exactly the same colors of light from one module to the next and regardless of the angle from which they were viewed. Some of the techniques he developed to meet those specifications have helped him keep BIOS’s lighting uniform, “so you can’t tell one light from another, which is surprisingly hard to do,” he says.

As the company’s first products hit the market, the LED modules Soler helped design to support astronauts’ sleep cycles finally began making their way to the ISS, where they are gradually replacing the original fluorescent lighting. He says he’s interested to see the performance results.

“There’s a lot of stuff we’ll learn through what’s going on at NASA,” Soler says. “Those findings will definitely inform the next-generation LED lights. NASA is still going to be a conduit for a lot of that science.”