NASA Technology

In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory’s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen.

altIt might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth.

NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets.

Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical.

The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth’s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth.

Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA’s Ames Research Center. This metabolic process breaks down sugars for energy to fuel cellular functions. “We think this chemical process did not exist when life first formed on Earth,” he says, “because it is based on oxygen being available, and there was little oxygen available on the early Earth.” It is possible that there are anaerobic regions beneath the sea floor in which life forms like those early non-Krebs Cycle microbes may yet exist.

To detect and potentially collect samples of life emerging from hydrothermal vents, Flynn and his colleagues created Medusa, a multi-sensor instrument designed for long-term observation of diked vents on the ocean floor. When the vents erupt, Medusa assesses indicators of life within the expelled water. If the results are positive, the observatory collects samples and detaches from the ocean floor, making the long journey to the surface for retrieval by scientists.

One of the indicators Medusa measures is the ratio of carbon isotopes in the water, namely carbon-12 and carbon-13. Living organisms preferentially take up carbon-12, Flynn says, so examining the ratio of these isotopes can help to determine the source of carbon in an environment as either biological or non-biological.

“On Mars, there is evidence of localized methane in the atmosphere, and that methane could come from biological sources or from geochemical ones,” Flynn says. “Determining the background planetary carbon isotope ratios and then evaluating the specific carbon ratios in this methane would help to determine how it was formed.” A long-duration observatory similar to Medusa could one day provide essential evidence for or against the presence of life on the Red Planet or beneath the ice-crusted oceans of Europa.