Since the crops are already planted and growing when the images are taken, the pictures are generally used to plan changes for the following year, Faleide says. “That you learn from your mistakes is basically the concept here.”

But with more and more private-sector satellites taking to the skies, he says, the imagery will soon be useable on more of a real-time basis, for example, to schedule irrigation. Multispectral imaging can also reveal plant health and water content, but acting on that information requires frequent, high-resolution monitoring.

Satshot currently uses imagery from a handful of private companies—RapidEye’s five satellites, Airbus’ two Pleiades orbiters, and GeoVantage’s fleet of planes—as well as the NASA-built Landsat 8 satellite. Each features different resolutions and imaging capabilities. The company already has agreements with startup Planet Labs, which is partnering with NASA to put dozens of small-scale Dove satellites into orbit with the goal of producing high-resolution imagery of the entire planet on a daily basis (see page 104). With that capability, Faleide says, a cloud-free image of any given field can be virtually guaranteed on at least a weekly basis, which is enough that the data can be used to schedule irrigation economically.

Aerial view of farmland
With more Earth-imaging satellites taking to orbit every year, companies like Satshot can offer images of a given area that are current and loaded with information. These are a boon to farmers, as well as crop consultants and agricultural dealers.

Planet Labs also has a partnership with Faleide, who has leased the company a piece of his farm in North Dakota for the installation of two large receiving stations.

Just as he was 20 years ago, though, he is still waiting for technology to catch up. Only about 5 percent of irrigation pivots in use today have the capability to adapt to schedule changes, he says. “They’ve got to get their technology up to date, and we’ve got to provide more consistency.”

The advent of smartphones and other “smart” devices has allowed the company to make its products more accessible, for example via its Landscout app, which allows mobile image analysis, and its iCue app that lets customers know every time a picture is taken of their fields and automatically analyzes images according to custom settings.

Satshot is also working with farm equipment giant John Deere to integrate computer systems on tractors with the Satshot image archive. The application will allow the machines to automatically adjust the rate of seed, fertilizer, and pesticide application based on vegetation indices, saving up to 20 percent on these resources, Faleide says, adding, “Environmentally, it’s very sound practice.”

The company is able to provide images of any field in the United States and Canada and counts among its customers thousands of individual farmers, crop consultants, agricultural dealers, and corporations employing many dealers.

“Since 14 years ago, we’ve increased our exposure by at least 10 times,” Faleide says, adding that revenues have increased four- or five-fold. “We’re growing at a pretty rapid rate now, because the precision agriculture industry has really matured in the last three or four years.”

And at the heart of the company’s technology, bringing images from orbit to end-users, is the MapServer platform, which UMN updated between 2000 and 2006 to allow data processing and image analysis as part of the TerraSIP project, also funded by NASA, and which has subsequently undergone several more iterations.

“We’ve used a tremendous amount of open source technology provided by NASA to get where we are today,” Faleide says. “The NASA research into the basic technologies has been so instrumental in bringing this to fruition.”

Minnesota’s Department of Natural Resources, the only client originally planned, also remains among the server’s users, running applications such as one that allows it to track the spread of wildfires. UMN still holds the MapServer license, but the software is part of the larger Open Source Geospatial Foundation.

Burk says he never expected the platform to become so widespread. “Since this was not our original plan, we had no aspirations of making a big deal of this or bringing in other clients,” he says, noting that the server started to take on a life of its own when his team decided to agree to requests that it be developed in an open source format, which led to contributions from developers across the world.

“It went well beyond what we ever envisioned,” Burk says.