NASA Technology

Science fiction writer Arthur C. Clarke, in his hugely successful 1979 work The Fountains of Paradise, crafted a story around the development of a technology that had been proposed since at least the late-1890s: a space elevator. Simple but provocative, its design calls for a cable to rise 24,000 miles from Earth’s equator to a satellite in geosynchronous orbit. Spacecraft and payloads would climb up the cable and launch into space, upending the costly, resource-intensive rocket launch method currently used.

 Artist’s rendering of a space elevator
An artist’s depiction of a technology that has long been a mainstay of the science fiction genre: a space elevator. Transporting and launching satellites and other spacecraft using an elevator shaft that extends thousands of miles into space would obviate the need for costly rocket launches from Earth’s surface.

Through the years, that concept has taken a leap from the pages of fiction to the realm of scientific inquiry, as governments and private industry have been working on cracking various logistical barriers to its realization. For its part, NASA’s Space Technology Mission Directorate is also helping to advance innovation in that and other visionary technologies through its Centennial Challenges Program. Started in 2005, the program offers cash prizes for inventors, including small businesses and student groups, to come up with innovative solutions to technical problems of interest to both the Agency and the Nation. Based on feedback from the public and from private industry, in its inaugural year the program initiated the Space Elevator Challenge.

One of the contests was to help overcome a key conundrum in the space elevator scheme—how to power the robot “climbers” that would be used to carry spacecraft and other payloads up the elevator and into orbit. Because of the distances involved, the robot would need to operate without being connected to electrical wires; batteries, while portable, lack adequate reserves of power. The only feasible alternative at the moment is to beam light onto photovoltaic arrays installed on the climbers, which would convert incoming photons into electricity. The “cordless extension cord,” as it’s called, would be useful for powering not only space elevators but also exploration vehicles such as rovers and other devices.

To advance the technology, the Spaceward Foundation arranged with NASA to run a sub-competition as a part of the Space Elevator Challenge, which was called the Power Beaming Challenge. The objective for each team was to utilize the photovoltaic-based approach to design a robot that could climb a cable suspended in mid-air for a certain distance and at a certain speed.

Technology Transfer

Engineers check a robotic climber before a challenge
Steve Burrows (left) and Dave Bashford of LaserMotive prepare their robot for one of its successful ascents during the competition.

The Power Beaming Challenge was held in 2005, 2006, 2007, and 2009, and the requirements became more stringent as the years progressed. In 2005 and 2006, rules held that, to claim a cash prize, participating robots had to climb 50 meters of cable at a speed of 1 meter per second; in 2007 the required distance was increased to 100 meters; in 2009, competing robots had to climb 3,280 feet, or one kilometer, into the air at a minimum pace of at least two meters per second. (For the kilometer-long contest, organizers forsook the crane they had been using for a helicopter, which hoisted the ultra-long cable into mid-air for 45-minute intervals, the length of time each team had to accomplish the feat.)

Not a single team managed to win prize money in any year, that is, except for Seattle-based LaserMotive. Physicist and laser expert Jordin Kare and fellow scientist Tom Nugent decided to form the group, comprising themselves and other industry experts, in preparation for the 2007 competition after watching the previous year’s contest in Las Cruces, New Mexico. “Most of the teams were using spotlights to direct light onto their climbers,” Nugent says. “We thought we could do better.”

By doing better, Nugent meant employing diode lasers, which provide more light intensity than spotlights. By the mid-2000s these semiconductor lasers had become efficient enough to make the leap from industrial to commercial applications, such as laser hair removal, materials processing, and telecommunications. Their expanded use helped reduce the costs of production, making it possible for a startup like LaserMotive to incorporate the technology in its scheme.

In addition to ordering a customized laser diode that combined multiple diodes into a compact but high-intensity light source, the team worked diligently in designing and building the robot, which was a huge undertaking by itself, says Nugent. Among their major innovations was optimizing its photovoltaic arrays so that they maintained efficiency even when the beam was not uniform or not properly centered on them. Afterward, they tested the entire setup by powering the climber repeatedly on a treadmill, which helped them “to do a lot of iterations, which prepared us better for the actual event,” he adds.

A robotic climber returns to the ground after a challenge
The requirements for the 2009 Power Beaming Challenge were the most demanding, as competitors had to power their robots up a dangling cable for one kilometer at a minimum speed of two meters per second to qualify for a cash prize. LaserMotive’s robotic climber was the only machine out of the three entered into the competition that reached the coveted one-kilometer bumper (left), doing so on four separates occasions and at a maximum speed of 3.97 meters per second, earning the team $900,000 from NASA.

In the 2007 competition, LaserMotive took a gamble and tweaked some of the system mechanics in order to increase the climber’s efficiency, but it had the effect of rendering it inoperable. In 2009 the team didn’t repeat its mistake. The crew simulated the climb multiple times in advance and, in the process, improved their plan of attack while also decreasing the likelihood of failure. The critical task of manually steering the laser was left to the youngest teammate, a former Marine who, as Nugent notes, happened to be an avid video gamer.

Their attention to detail paid off. LaserMotive became the only team whose climber ascended the cable the full kilometer, which was done on four separate occasions, and it did so at speeds above the minimum two meters per second (its fastest was 3.97 meters per second), netting the crew $900,000 as a result.