Following the wind tunnel testing in 2005, Honda launched its general aviation subsidiary Honda Aircraft in Greensboro, North Carolina, where 1,700 workers are employed to manufacture the planes.

The key innovation of the new jet is the over-the-wing engine mount, a major departure from previous light jets, which generally mount the engine on the fuselage, the main body of the aircraft. Mounting the engine over the wing can interfere with air flow, but Honda’s design, born out in the NTF testing, found a “sweet spot” that actually reduced the shockwave, thereby decreasing drag.

The over-the-wing engine mount design allows the plane to fly faster using less fuel, but it also increases space and comfort in the cabin, since the engine is no longer attached to the plane body.

As a result, the HondaJet has the fastest maximum cruising speed in its class, 422 knots (nearly 500 mph), and can fly at a maximum altitude of 43,000 feet, also highest in its class. The light jet recently set two speed records, flying from Teterboro, New Jersey, to Fort Lauderdale, Florida, in just two hours and 51 minutes, and from Boston, Massachusetts, to Palm Beach, Florida, in two hours and 58 minutes.

The lower drag also increases the jet’s fuel efficiency, which makes the airplane less expensive to operate than other light jets. Honda Aircraft estimates its engine configuration uses up to 17 percent less fuel over a given distance than typical configurations, assuming similar flight conditions and operator.

Mounting the engine over the wings also increases passenger comfort, Fujino says: there is more room in the cabin, because the engine isn’t taking up any space, and vibrations don’t transfer, reducing noise.

The company markets to owner pilots and to small business owners who need to travel frequently. It began delivering jets in late 2015 and has already sold more than 100, with prices starting around $5 million, in North and South America and Europe. The company has recently expanded sales to Central America and is looking to the Middle East as well.

And back at Langley, the NTF continues to test the cutting edge in aeronautics.

“You can think about it as risk reduction,” Wahls explains. “Someone has an idea and it’s on paper, but you need to make it real. Part of making it real you can do with CFD, and that’s come a long way, but you still want to see some experimental data.” And that’s something that can be done at the NASA facility better than almost anywhere else in the world.