Researchers from MIT’s Microsystems Technology Laboratories (MTL) presented a p-type transistor with the highest “carrier mobility” yet measured. By that standard, the device is twice as fast as previous experimental p-type transistors and almost four times as fast as the best commercial p-type transistors.

Like other experimental high-performance transistors, the new device derives its speed from its use of a material other than silicon: in this case, germanium. Alloys of germanium are already found in commercial chips, so germanium transistors could be easier to integrate into existing chip-manufacturing processes than transistors made from more exotic materials.

The new transistor also features what’s called a trigate design, which could solve some of the problems that plague computer circuits at extremely small sizes (and which Intel has already introduced in its most advanced chip lines). For all these reasons, the new device offers a tantalizing path forward for the microchip industry — one that could help sustain the rapid increases in computing power, known as Moore’s Law, that consumers have come to expect.


Also: Learn about germanium lift-off masks for thin metal film patterning.