Researchers at the U.S. Naval Research Laboratory flew their fuel-cell-powered Ion Tiger unmanned aerial vehicle (UAV) for 48 hours and 1 minute using liquid hydrogen fuel in a new, NRL-developed, cryogenic fuel storage tank and delivery system. This flight shatters their previous record of 26 hours and 2 minutes set in 2009 using the same vehicle, but with gaseous hydrogen stored at 5000 psi.

Liquid hydrogen is three times denser than 5000-psi compressed hydrogen. The cryogenic liquid is stored in a lightweight tank, allowing more hydrogen to be carried onboard to increase flight endurance. Success in flight requires developing a high quality, lightweight insulated flight dewar for the cryogenic fuel, plus matching the boil off of the cryogenic hydrogen to the vehicle fuel consumption.

Although long endurance is possible with conventional, hydrocarbon-fueled systems, these are usually loud, inefficient, and unreliable in this aircraft class. Similarly, small, electric, battery-powered systems are limited to endurances of only several hours.

To address the logistics of in-theater supply of liquid or gaseous hydrogen, NRL proposes in-situ manufacture of LH2 for use as fuel. An electrolyzer-based system would require only water for feedstock, and electricity, possibly from solar or wind, to electrolyze, compress, and refrigerate the fuel.