Researchers have developed a new laser-based system that offers an efficient and low-cost way to detect fires in challenging environments such as industrial facilities or large construction sites. With further development, the system could eventually detect fires that are more than a kilometer away. It could be used in a variety of industries such as waste management facilities, power supply plants, food processing factories, and textile factories.

A new laser-based system uses inexpensive optical hardware to detect fires in challenging environments such as industrial facilities or large construction sites. The researchers tested a prototype in the waste plant picture shown above. (Credit: Mikael Lassen, Danish Fundamental Metrology A/S)

A multi-institutional group of researchers described the new system, which detects a fire or change in temper-ature by using inexpensive optical components to create and detect changes in a speckle pattern.

The research is part of a Eurostars project that aims to develop a system that can identify small temperature increases to provide early and reliable detection of fire. In addition to Danish Fundamental Metrology A/S, the project included researchers from Elotec A/s in Norway and LAP-Sikkerhed ApS, and The Danish Institute of Fire and Security Technology, all in Denmark.

Most fire detection and prevention systems used today do not work well for harsh industrial sites or for large areas. Standard smoke detectors often give false alarms because of the dust and pollutants in these environments and cannot detect the submicron particulate matter released during early stages of fire.

Although optical detection systems based on measuring amplitude changes in an optical signal are more advanced, they are also sensitive to vibrations and cannot always detect fires through dust and steam. For sensors that detect radiation emitted by flames, radiation from other sources such as sunlight, artificial light, welding, or other non-dangerous sources can give rise to false alarms.

In the new work, the researchers applied a completely different optical approach to detect fires by measuring dynamic speckle patterns. These changing patterns are produced by interference when laser light hits a rough surface. When a fire is occurring, the heat flow makes the laser beam jitter in a way that is detectable when the laser light is reflected to a detector at the laser source. Statistics and machine learning were used to analyze the noise pattern of the dynamic speckle pattern created by that laser light. The presence of broadband white noise indicates a fire while noise sources confined to a narrow range of wavelengths could be ruled out as a mechanical influence such as vibration.

To validate the new fire detection system, the researchers tested a remotely operated proof-of-concept prototype at the Energnist I/S waste plant in Kolding, Denmark. Due to the extremely harsh, noisy and dusty environment, the plant normally has three to four false alarms per month.

The system detected fires with an accuracy of 91 percent, which is a very good result taking into account the harsh environment. Because it doesn’t rely on the absolute intensity of the light beam, it is robust to general attenuation due to dust and smoke.

Converting the prototype into a finalized product will require additional product development such as completing the housing, optimizing electronics and algorithms, and designing the user interface. The researchers also plan to upgrade the optical detector and the laser to a more powerful one to increase sensitivity and expand the sensing range first to 500 to 600 meters and eventually to over one kilometer.

For more information, please contact This email address is being protected from spambots. You need JavaScript enabled to view it..

Photonics & Imaging Technology Magazine

This article first appeared in the January, 2020 issue of Photonics & Imaging Technology Magazine.

Read more articles from this issue here.

Read more articles from the archives here.