A subaperture stitching interferometer system provides near-nulling of a subaperture wavefront reflected from an object of interest over a portion of a surface of the object. A variable optical element located in the radiation path adjustably provides near-nulling to facilitate stitching of subaperture interferograms, creating an interferogram representative of the entire surface of interest. This enables testing of aspheric surfaces without null optics customized for each surface prescription.

The surface shapes of objects such as lenses and other precision components are often measured with interferometry. However, interferometers have a limited capture range, and thus the test wavefront cannot be too different from the reference or the interference cannot be analyzed. Furthermore, the performance of the interferometer is usually best when the test and reference wavefronts are nearly identical (referred to as a “null” condition). Thus, it is necessary when performing such measurements to correct for known variations in shape to ensure that unintended variations are within the capture range of the interferometer and accurately measured.

This invention is a system for near-nulling within a subaperture stitching interferometer, although in principle, the concept can be employed by wavefront-measuring gauges other than interferometers. The system employs a light source for providing coherent radiation of a subaperture extent. An object of interest is placed to modify the radiation (e.g., to reflect or pass the radiation), and a variable optical element is located to interact with, and nearly null, the affected radiation. A detector or imaging device is situated to obtain interference patterns in the modified radiation. Multiple subaperture interferograms are taken and are “stitched,” or joined, to provide an interferogram representative of the entire surface of the object of interest.

The primary aspect of the invention is the use of adjustable corrective optics in the context of subaperture stitching nearnulling interferometry, wherein a complex surface is analyzed via multiple, separate, overlapping interferograms. For complex surfaces, the problem of managing the identification and placement of corrective optics becomes even more pronounced, to the extent that in most cases the null corrector optics are specific to the particular asphere prescription and no others (i.e. another asphere requires completely different null correction optics). In principle, the near-nulling technique does not require subaperture stitching at all.

Building a near-null system that is practically useful relies on two key features: simplicity and universality. If the system is too complex, it will be difficult to calibrate and model its manufacturing errors, rendering it useless as a precision metrology tool and/or prohibitively expensive. If the system is not applicable to a wide range of test parts, then it does not provide significant value over conventional null-correction technology. Subaperture stitching en ables simpler and more universal nearnull systems to be effective, because a fraction of a surface is necessarily less complex than the whole surface (excepting the extreme case of a fractal surface description). The technique of near-nulling can significantly enhance aspheric subaperture stitching capability by allowing the interferometer to capture a wider range of aspheres. More over, subaperture stitching is essential to a truly effective near-nulling system, since looking at a fraction of the surface keeps the wavefront complexity within the capability of a relatively simple near-null apparatus. Furthermore, by reducing the subaperture size, the complexity of the measured wavefront can be reduced until it is within the capability of the near-null design.

This work was done by Greg Forbes, Gary De Vries, and Paul Murphy of QED Technologies, Inc.; and Chris Brophy of Optical Engineering Services for Goddard Space Flight Center. GSC-16152-1


Photonics Tech Briefs Magazine

This article first appeared in the July, 2012 issue of Photonics Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.