Physics-based numerical simulation codes are widely used in science and engineering to model complex systems that would be infeasible to study otherwise. While such codes may provide the highest-fidelity representation of system behavior, they are often so slow to run that insight into the system is limited. Trying to understand the effects of inputs on outputs by conducting an exhaustive grid-based sweep over the input parameter space is simply too time-consuming. An alternative approach called “directed exploration” (see figure) has been developed to harvest information from numerical simulators more efficiently. The basic idea is to employ active learning and supervised machine learning to choose cleverly at each step which simulation trials to run next based on the results of previous trials.
The software focuses on the case in which the feedback from the simulation trials is binary-valued, i.e., the learner is only informed of the success or failure of the simulation trial to produce a desired output. The software offers a number of choices for the supervised learning algorithm (the method used to model the system behavior given the results so far) and a number of choices for the active learning strategy (the method used to choose which new simulation trials to run given the current behavior model). The software also makes use of the LEGION distributed computing framework to leverage the power of a set of compute nodes. The approach has been demonstrated on a planetary science application in which numerical simulations are used to study the formation of asteroid families.
This work was done by Michael Burl and Esther Wang of Caltech, and Brian Enke and William J. Merline of SWRI for NASA’s Jet Propulsion Laboratory.
This software is available for commercial licensing. Please contact Dan Broderick at This email address is being protected from spambots. You need JavaScript enabled to view it.. NPO-47919
This Brief includes a Technical Support Package (TSP).

SIM_EXPLORE: Software for Directed Exploration of Complex Systems
(reference NPO-47919) is currently available for download from the TSP library.
Don't have an account? Sign up here.