Innovators at NASA's Johnson Space Center have developed a filtration device to eliminate contaminants from water supplies. Originally developed to purify waste-water for reuse aboard the International Space Station, the innovation is applicable to numerous situations on Earth where there is a need to collect potable, medical-grade water from a contaminated water supply. The unique aspect of the technology is its use of acoustics, rather than pressure, to drive water through small-diameter carbon nanotubes. The invention requires less power than conventional filtration systems, and is well-suited to a variety of water processing needs.

This water filtration innovation is an acoustically driven molecular sieve embedded with small-diameter carbon nanotubes. First, water enters the device and contacts the filter matrix, which can be made of polymer, ceramic, or metallic compounds. Carbon nanotubes within the matrix allow only water molecules to pass through, leaving behind any larger molecules and contaminants.

An oscillator circuit attached to the filter matrix propagates acoustic vibration, further causing water molecules to de-bond and move through the filter. This use of acoustics also eliminates dependence on gravity (and thus filter orientation) to move water through the device. When water exiting the system diminishes to a pre-determined set point, a cleaning cycle is triggered to clear the sediment from the inlet of the filter, reestablishing the standard system flow rate. Unlike other filtration systems, flushing of the filter system is not required. The combination of acoustics and small-diameter carbon nanotubes in this innovation make it an effective and efficient means of producing contaminant-free, clean water.

Potential applications include municipal water facilities, medical facilities, laboratories, distilleries, ultrapure water filtration for a semiconductor fabrication facility, desalination plants, wastewater treatment facilities, and consumer markets.

NASA is actively seeking licensees to commercialize this technology. Please contact Michelle P. Lewis at This email address is being protected from spambots. You need JavaScript enabled to view it. to initiate licensing discussions.