A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures.

The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack.

The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure ˜14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft (˜15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

This work was done by Alan Cisar, Chris Boyer, and Charles Greenwald of Lynntech, Inc., for Glenn Research Center.

Inquiries concerning rights for the commercial use of this invention should be addressed to:

NASA Glenn Research Center
Commercial Technology Office
Attn: Steve Fedor
Mail Stop 4-8
21000 Brookpark Road
Cleveland, Ohio 44135

Refer to LEW-17284-1.