An approach is defined that describes a method of iterating over massively large arrays containing sparse data using an approach that is implementation independent of how the contents of the sparse arrays are laid out in memory. What is unique and important here is the decoupling of the iteration over the sparse set of array elements from how they are internally represented in memory. This enables this approach to be backward compatible with existing schemes for representing sparse arrays as well as new approaches. What is novel here is a new approach for efficiently iterating over sparse arrays that is independent of the underlying memory layout representation of the array. A functional interface is defined for implementing sparse arrays in any modern programming language with a particular focus for the Chapel programming language. Examples are provided that show the translation of a loop that computes a matrix vector product into this representation for both the distributed and not-distributed cases. This work is directly applicable to NASA and its High Productivity Computing Systems (HPCS) program that JPL and our current program are engaged in. The goal of this program is to create powerful, scalable, and economically viable high-powered computer systems suitable for use in national security and industry by 2010. This is important to NASA for its computationally intensive requirements for analyzing and understanding the volumes of science data from our returned missions.

This work was done by Mark James of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free online at www.techbriefs.com/tsp under the Information Sciences category.

The software used in this innovation is available for commercial licensing. Please contact Karina Edmonds of the California Institute of Technology at (626) 395-2322. Refer to NPO-42502.



This Brief includes a Technical Support Package (TSP).
Document cover
Representation-Independent Iteration of Sparse

(reference NPO-42502) is currently available for download from the TSP library.

Don't have an account? Sign up here.