Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency-modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search.

This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photon- counting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux.

The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation.

If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal processing of the photocurrent processes at the outputs of the two detectors is to perform log-matched filtering followed by a summation and peak detection. This implies that neither difference detection, nor Fourier-domain peak detection, which are the staples of the state-of-the-art systems, is optimal when a weak local oscillator is employed.

This work was done by Baris I. Erkmen of Caltech, and Zeb W. Barber and Jason Dahl of Montana State University for NASA’s Jet Propulsion Laboratory. For more information, contact This email address is being protected from spambots. You need JavaScript enabled to view it.. NPO-48866

NASA Tech Briefs Magazine

This article first appeared in the January, 2014 issue of NASA Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.