A recently written computer program implements dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN), which was described in "Method of Real-Time Principal-Component Analysis" (NPO-40034) NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 59.

To recapitulate: DOGEDYN is a method of sequential principal-component analysis (PCA) suitable for such applications as data compression and extraction of features from sets of data. In DOGEDYN, input data are represented as a sequence of vectors acquired at sampling times. The learning algorithm in DOGEDYN involves sequential extraction of principal vectors by means of a gradient descent in which only the dominant element is used at each iteration. Each iteration includes updating of elements of a weight matrix by amounts proportional to a dynamic initial learning rate chosen to increase the rate of convergence by compensating for the energy lost through the previous extraction of principal components. In comparison with a prior method of gradient-descent-based sequential PCA, DOGEDYN involves less computation and offers a greater rate of learning convergence. The sequential DOGEDYN computations require less memory than would parallel computations for the same purpose. The DOGEDYN software can be executed on a personal computer.

This program was written by Vu Duong and Tuan Duong of Caltech for NASA's Jet Propulsion Laboratory. For further information, access the Technical Support Package (TSP) free on-line at www.techbriefs.com/tsp under the Software category.

This software is available for commercial licensing. Please contact Karina Edmonds of the California Institute of Technology at (818) 393-2827. Refer to NPO-40056.


This Brief includes a Technical Support Package (TSP).
Real-Time Principal-Component Analysis

(reference NPO-40056) is currently available for download from the TSP library.

Don't have an account? Sign up here.



NASA Tech Briefs Magazine

This article first appeared in the June, 2005 issue of NASA Tech Briefs Magazine.

Read more articles from the archives here.