A document discusses a project in which a series of novel hybrid positive electrode materials was developed and tested in asymmetric capacitors with carbon negative electrodes. The electrochemical performance of the hybrid capacitors was characterized by cyclic voltammetry and a DC charge/discharge test. The hybrid capacitor exhibited ideal capacitor behavior with an extended operating voltage of 1.6 V in aqueous electrolyte, and energy density higher than activated carbon-based supercapacitors.

Nanostructured MnO2 is a promising material for electrochemical capacitors (ECS) because of its low cost, environmentally friendly nature, and reasonably high specific capacitance. The charge capacity of the capacitors can be further improved by increasing the specific surface area of the MnO2 electrode material. The power density and space radiation stability of the capacitors can be enhanced by coating the MnO2 nanoparticles with conducting polymers. The conducting polymer coating also helps in radiation-hardening the ECS.

This work was done by Krishnaswamy K. Rangan and Tirumalai S. Sudarshan of Materials Modification, Inc. for Glenn Research Center.

Inquiries concerning rights for the commercial use of this invention should be addressed to

NASA Glenn Research Center
Innovative Partnerships Office
Attn: Steven Fedor
Mail Stop 4–8
21000 Brookpark Road
Cleveland
Ohio 44135.

LEW-18751-1