NASA Langley researchers, in work spanning more than a decade, have developed a portfolio of technologies for low-temperature gas catalysis. Originally developed to support space-based CO2 lasers, the technology has evolved into an array of performance capabilities and processing approaches, with potential applications ranging from indoor air filtration to automotive catalytic converters and industrial smokestack applications. The technology has been used commercially in systems that provide clean air to racecar drivers, as well as incorporated into commercially available filtration systems for diesel mining equipment. Backed with extensive research on these technologies, NASA welcomes interest in the portfolio for other commercial and industrial applications.

The low-temperature oxidation catalyst technology employs a novel catalyst formulation, termed platinized tin oxide (Pt/SnOx). The catalysts can be used on silica gel and cordierite catalyst supports, and the latest developments provide sprayable formulations for use on a range of support types and shapes. Originally developed for removal of CO, the catalyst has also proven effective for removal of formaldehyde and other lightweight hydrocarbons.

NASA researchers have also extended the capability to include reduction of NOx, and have developed advanced chemistries that stabilized the catalyst for automotive catalytic converters via the engineered addition of other functional components. These catalyst formulations operate at elevated temperatures and have performed above the EPA exhaust standards for well beyond 25,000 miles. In addition, the catalyst can be used in diesel engines because of its ability to operate over an increased temperature range. For use as a gas sensor, the technology takes advantage of the exothermic nature of the catalytic reaction to detect formaldehyde, CO, or hydrocarbons, with the heat being produced proportional to the amount of analyte present.

Potential applications include automotive exhaust catalytic converters, industrial process control, smokestack emission remediation, indoor air treatment, cabin air treatment, contained breathing systems, and diesel-operated machinery.

NASA is actively seeking licensees to commercialize this technology. Please contact The Technology Gateway at This email address is being protected from spambots. You need JavaScript enabled to view it. to initiate licensing discussions. Follow this link for more information: http://technology.nasa.gov/patent/TB2016/LAR-TOPS-124 .