NASA is preparing for the next generation of CubeSats that are propelled and will make directional maneuvers. The new gimbal mount provides a seat for the motor, and controls the position of the thrusters that propel the CubeSat as it moves about and/or changes orbits.

The gimbal mount.

This small-footprint device controls the rotation (360°) and tilt (±12°) of a directional system to a very high accuracy of 0.02°. It alleviates the need for more traditional directional control hardware, including magnetorquers and magnetometers. The gimbal controls larger masses for its size than other positioning systems. It has a low parts count (six), and can support up to 0.5-kg mass. NASA built a prototype and conducted several tests to prove its control and precision capabilities, and its ability to withstand vibration testing. NASA seeks companies to commercialize the gimbal.

The gimbal mount test setup with a mass that simulates the mass of a thruster.

This rotary tilting gimbal (RTG) is designed to provide precision control in both the tilting and rotary degree of freedom by using accurate positioning, encoded piezoelectric motors, and a close-tolerance machined structure. The RTG functions via rotary motion of the integrated assembly by a grounded piezoelectric support motor, and tilts via a rotary motor that rides on the primary structure. This alleviates the need for more traditional, directional control hardware.

The rotary motor is connected to the tilt plate by a two-piece crank assembly. The gimbal weight, including the motors, is about 420 grams; without motors, it is about 100 grams. The operating temperature range is 0 – 50 °C. Sinusoidal testing was performed before and after the random vibration tests to determine if any structural changes occurred as a result of the tests. The gimbal met the qualification requirements and did not present any significant structural changes from flight-level testing.

NASA is seeking partners to further develop this technology through joint cooperative research and development. For more information and to explore opportunities, please contact Sammy Nabors at This email address is being protected from spambots. You need JavaScript enabled to view it. or 544-256-5226. Follow this link here for more information.