Researchers at NASA's Marshall Space Flight Center have developed a cryogenic isolation valve that utilizes the upstream line pressure of cryogenic fluids for actuation. Previously, the use of cryogenic fluids for actuation systems had been too difficult to control and resulted in unsafe operating conditions due to the cryogenic fluid used for actuation being separated from the main body of the valve. Once separated, the cryogenic fluid would heat too quickly and vaporize, resulting in high volatile pressures.

To avoid these issues, cryogenic fluid had historically been controlled and redirected using either electromechanical or pneumatic actuation systems. By using the upstream line pressure of the cryogenic fluid for actuation, NASA's cryogenic isolation valve eliminates the need for the complex support systems that are necessary with electromechanical and pneumatic actuation systems.

The technology uses solenoid valves powered by direct current (DC) electrical energy to control and redirect the energy stored in the upstream line pressure. Powering the solenoid valves only requires a DC power source capable of supplying 22 Watts that can be distributed and controlled in an on/off manner. By achieving actuation using only upstream line pressure and a 22-watt DC power source, many additional support systems that are required for electromechanical and pneumatic actuation are eliminated. This reduction of parts results in several benefits, including reduced footprint, weight, and potential cost of the valve in addition to lower energy consumption.

NASA is actively seeking licensees to commercialize this technology. Please contact Sammy A. Nabors at This email address is being protected from spambots. You need JavaScript enabled to view it. or 256-544-5226 to initiate licensing discussions. Follow this link here  for more information.