This report discusses a proposed docking mechanism to be located in a small hangar on the outside of the International Space Station (ISS). The mechanism would enable docking of a miniature robotic spacecraft (or free flyer) that would carry a video camera and would operate in the vicinity of the ISS. The docking mechanism would include, among other things, (1) an electromagnet for actuation, (2) electrical connectors for transferring data to and from the free flyer and recharging the freeflyer power system, and (3) a quick-disconnect (QD) coupling for recharging a supply of gaseous N2. Once the free flyer had maneuvered into approximate docking alignment, an electromagnet in the mechanism would attract a ferromagnetic plate on the free flyer strongly enough to pull the free flyer in from a distance of as much as several inches (≈10 cm). The mechanism would include surfaces that would mate with surfaces on the free flyer to correct any misalignment as the free flyer was pulled in. Once docked, the free flyer would be held in place by either spring-loaded cam locks or the QD coupling itself. Data, power, and N2 can then be transferred to the vehicle.

This work was done by James David Jochim and Christopher S. Lovchik of Johnson Space Center.