A report presents a method of scaling, to partial-Earth gravity, of parameters that describe pressure drops and other characteristics of two-phase (liquid/ vapor) flows. The development of the method was prompted by the need for a means of designing two-phase flow systems to operate on the Moon and on Mars, using fluid- properties and flow data from terrestrial two-phase-flow experiments, thus eliminating the need for partial-gravity testing. The report presents an explicit procedure for designing an Earth-based test bed that can provide hydrodynamic similarity with two-phase fluids flowing in partial-gravity systems. The procedure does not require prior knowledge of the flow regime (i.e., the spatial orientation of the phases). The method also provides for determination of pressure drops in two-phase partial-gravity flows by use of a generalization of the classical Moody chart (previously applicable to single-phase flow only). The report presents experimental data from Mars- and Moon-activity experiments that appear to demonstrate the validity of this method.

This work was done by Kathryn M. Hurlbert of Johnson Space Center and Larry C. Witte of the University of Houston. For further information, access the Technical Support Package (TSP) free on-line at www.techbriefs.com/tspunder the Physical Sciences category. MSC-23319.