A document proposes the development of spin-stabilized microsatellites powered by solar photovoltaic cells aided by solar concentrators. Each such satellite would have a cylindrical or other axisymmetric main body with solar cells mounted in a circumferential beltlike array on its exterior surface. The solar concentrator would be a halo-like outrigger cylindrical Fresnel lens array that would be deployed from and would surround the main body, connected to the main body via spokes or similar structural members.

The spacecraft would be oriented with its axis of symmetry perpendicular to the line of sight to the Sun and would be set into rotation about this axis. In effect, the solar cells and concentrator would be oriented and rotated in a “rotisserie” mode, making it possible to take advantage of the concentration of solar light while preventing localized overheating of the solar cells. In addition, the mechanical stabilization inherently afforded by the rotation could be exploited as a means of passive attitude control or, at least, of reducing the requirement for active attitude control.

This work was done by Paul Timmerman and Virgil Shields of Caltech for NASA’s Jet Propulsion Laboratory.