A document proposes systems of sensors encased in cold hibernated elastic memory (CHEM) structures for exploring remote planets. The CHEM concept was described in two prior NASA Tech Briefs articles, including “Cold Hibernated Elastic Memory (CHEM) Expandable Structures” (NPO-20394), Vol. 23, No. 2 (February 1999), page 56 and “Solar Heating for Deployment of Foam Structures” (NPO-20961), Vol. 25, No. 10 (October 2001), page 36. To recapitulate: Lightweight structures that can be compressed for storage and later expanded, then rigidified for use are made from foams of shape-memory polymers (SMPs). According to the instant proposal, a CHEM sensor structure would be fabricated at full size from SMP foam at a temperature below its glass-transition temperature (Tg). It would then be heated above Tg and compacted to a small volume, then cooled below Tg and kept below Tg during launch, flight, and landing. At landing, the inelastic yielding of the rigid compacted foam would absorb impact energy, thereby enabling the structure to survive the landing. The structure would then be solar heated above Tg, causing it to revert to its original size and shape. Finally, the structure would be rigidified by cooling it below Tg by the cold planetary or space environment. Besides surviving hard landing, this sensor system will provide a soft, stick-at-the-impact- site landing to access scientifically and commercially interesting sites, including difficult and hard-to-reach areas.

This work was done by Witold Sokolowski and Eric Baumgartner of Caltech for NASA’s Jet Propulsion Laboratory.