A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant.

In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

This work was done by David Z. Ting, Sumith V. Bandara, and Sarath D. Gunapala of Caltech and Yia-Chung Chang of the University of Illinois for NASA’s Jet Propulsion Laboratory. For more information, download the Technical Support Package (free white paper) at www.techbriefs.com/tsp under the Physical Sciences category. NPO-46115


This Brief includes a Technical Support Package (TSP).
Submonolayer Quantum Dot Infrared Photodetector

(reference NPO-46115) is currently available for download from the TSP library.

Don't have an account? Sign up here.


NASA Tech Briefs Magazine

This article first appeared in the August, 2010 issue of NASA Tech Briefs Magazine.

Read more articles from this issue here.

Read more articles from the archives here.