NASA's Kennedy Space Center (KSC) seeks to license its Multidimensional Damage Detection System for Flat Surfaces technology. The ability to detect damage to composite surfaces can be crucial, especially when those surfaces are enclosing a sealed environment that sustains human life and/or critical equipment or materials. Minor damage caused by foreign objects can, over time, eventually compromise the structural shell resulting in loss of life and/or destruction of equipment or material. The capability to detect and precisely locate damage to protective surfaces enables technicians to prognosticate the expected lifetime of the composite system, as well as to initiate repairs when needed to prevent catastrophic failure or to extend the service life of the structure.

The damage detection system uses layered composite material made up of two-dimensional, thin-film, damage detection layers separated by thicker nondetection layers.

The Damage Detection System consists of layered composite material, made up of two-dimensional thin-film damage detection layers separated by thicker nondetection layers, coupled with a detection system. The damage detection layers within the composite material are thin films with a conductive grid or striped pattern. The conductive pattern can be applied on a variety of substrates using several different application methods. The number of detection layers in the composite material can be tailored depending on the level of damage detection detail needed for a particular application. When damage occurs to any detection layer, a change in the electrical properties of that layer is detected and reported. Multiple damages can be detected simultaneously, providing real-time detail on the depth and location of the damage.

The truly unique feature of the system is its flexibility. It can be designed to gather as much (or as little) information as needed for a particular application using wireless communication. Individual detection layers can be turned on or off as necessary, and algorithms can be modified to optimize performance. The damage detection system can be used to generate both diagnostic and prognostic information related to the health of layered composite structures, which will be essential if such systems are utilized to protect human life and/or critical equipment and material.

This technology has potential applications in aircraft, military shelters, solar arrays, critical hardware enclosures, spacecraft, space habitats, inflatable structures, and smart garments.

NASA is actively seeking licensees to commercialize this technology. Please contact Lew Parrish at This email address is being protected from spambots. You need JavaScript enabled to view it. to initiate licensing discussions. Follow this link for more information: http://technology.nasa.gov/patent/TB2016/KSC-TOPS-30.