Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating twophoton molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixedfrequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QE-MASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled- photon spectroscopy for development and implementation of emerging quantum- spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad® software package.

This program was written by Quang-Viet Nguyen of Glenn Research Center and Jun Kojima of the National Academy of Sciences. For further information, access the Technical Support Package (TSP) free on-line at www.techbriefs.com/tsp under the Software category.

Inquiries concerning rights for the commercial use of this invention should be addressed to

NASA Glenn Research Center
Innovative Partnerships Office
Attn: Steve Fedor
Mail Stop 4–8
21000 Brookpark Road
Ohio 44135.

Refer to LEW-17830-1.

NASA Tech Briefs Magazine

This article first appeared in the April, 2006 issue of NASA Tech Briefs Magazine.

Read more articles from the archives here.