The NASA Glenn Research Center General Multi-Block Navier-Stokes Convective Heat Transfer Code, Glenn- HT, has been used extensively to predict heat transfer and fluid flow for a variety of steady gas turbine engine problems. Recently, the Glenn-HT code has been completely rewritten in Fortran 90/95, a more object-oriented language that allows programmers to create code that is more modular and makes more efficient use of data structures. The new implementation takes full advantage of the capabilities of the Fortran 90/95 programming language. As a result, the Glenn-HT code now provides dynamic memory allocation, modular design, and unsteady flow capability. This allows for the heat-transfer analysis of a full turbine stage. The code has been demonstrated for an unsteady inflow condition, and gridding efforts have been initiated for a full turbine stage unsteady calculation. This analysis will be the first to simultaneously include the effects of rotation, blade interaction, film cooling, and tip clearance with recessed tip on turbine heat transfer and cooling performance. Future plans call for the application of the new Glenn-HT code to a range of gas turbine engine problems of current interest to the heat-transfer community. The new unsteady flow capability will allow researchers to predict the effect of unsteady flow phenomena upon the convective heat transfer of turbine blades and vanes. Work will also continue on the development of conjugate heat-transfer capability in the code, where simultaneous solution of convective and conductive heattransfer domains is accomplished. Finally, advanced turbulence and fluid flow models and automatic gridding techniques are being developed that will be applied to the Glenn-HT code and solution process.

This program was written by John C. Fabian, James D. Heidmann, and Barbara L. Lucci of Glenn Research Center; Ali A. Ameri of the University of Toledo; David L. Rigby of QSS, Inc.; and Erlendur Steinthorsson A & E Consulting, Inc. For further information, access the Technical Support Package (TSP) free on-line at under the Software category.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW- 17914-1.

NASA Tech Briefs Magazine

This article first appeared in the September, 2006 issue of NASA Tech Briefs Magazine.

Read more articles from the archives here.