Several FORTRAN codes have been written to implement the reformulated version of the high-fidelity generalized method of cells (HFGMC). Various aspects of the HFGMC and its predecessors were described in several prior NASA Tech Briefs articles, the most recent being "HFGMC Enhancement of MAC/GMC" (LEW-17818-1), NASA Tech Briefs, Vol. 30, No. 3 (March 2006), page 34. The HFGMC is a mathematical model of micromechanics for simulating stress and strain responses of fiber/matrix and other composite materials. The HFGMC overcomes a major limitation of a prior version of the GMC by accounting for coupling of shear and normal stresses and thereby affords greater accuracy, albeit at a large computational cost. In the reformulation of the HFGMC, the issue of computational efficiency was addressed: as a result, codes that implement the reformulated HFGMC complete their calculations about 10 times as fast as do those that implement the HFGMC. The present FORTRAN implementations of the reformulated HFGMC were written to satisfy a need for compatibility with other FORTRAN programs used to analyze structures and composite materials. The FORTRAN implementations also afford capabilities, beyond those of the basic HFGMC, for modeling inelasticity, fiber/matrix debonding, and coupled thermal, mechanical, piezo, and electromagnetic effects.

These programs were written by Steven M. Arnold of Glenn Research Center and Jacob Aboudi and Brett A. Bednarcyk of Ohio Aerospace Institute. For further information, access the Technical Support Package (TSP) free on-line at under the Software category.

Inquiries concerning rights for the commercial use of this invention should be addressed to NASA Glenn Research Center, Innovative Partnerships Office, Attn: Steve Fedor, Mail Stop 4–8, 21000 Brookpark Road, Cleveland, Ohio 44135. Refer to LEW-17960-1.