Simple Thermal Environment Model (STEM) is a FORTRAN-based computer program that provides engineering estimates of top-of-atmosphere albedo and outgoing long-wave radiation (OLR) for use in analyzing thermal loads on spacecraft near Earth. The thermal environment of a spacecraft is represented in STEM as consisting of direct solar radiation; short-wave radiation reflected by the atmosphere of the Earth, as characterized in terms of the albedo of the Earth; and OLR emitted by the atmosphere of the Earth. STEM can also address effects of heat loads internal to a spacecraft. Novel features of STEM include (1) the use of Earth albedo and OLR information based on time series of measurements by Earth Radiation Budget Experiment satellites in orbit; (2) the ability to address thermal time constants of spacecraft systems by use of albedo and OLR values representing averages over a range of averaging times; and (3) the ability to address effects, on albedo and OLR values, of satellite orbital inclination, the angle between the plane of a spacecraft orbit and the line between the centers of the Earth and Sun, the solar zenith angle, and latitude.

This program was written by Carl G. (Jere) Justus of Computer Sciences Corp. for Marshall Space Flight Center.