Gas Sensing System Employing Raman Scattering

The detection and characterization of molecular gases in a sample is a relatively difficult challenge. Usually, this task is relegated to expensive and time-consuming processes like mass spectrometry and gas chromatography. Furthermore, numerous industrial applications require such gas-phase analysis for pollution and process control; for example, in large, natural-gas-fired turbine electricity generators, large quantities of natural gas are mixed with air and burned. Because natural gas comes from a variety of sources, the composition of the gas changes often. If the composition of natural gas were known a-priori, turbine efficiency could be improved by adjusting the fuel/air mixture and other operating parameters. This control capability requires measurement of the components of the natural gas to better than 0.1% accuracy, with the measurement being performed at least once every second. There is currently no commercially available sensor or sensing system that can measure all of the natural-gas components in one second.

Posted in: Briefs, Sensors
Read More >>

Absorbent Polymer Reinforcing Fiber

Absorbent polymers can be used, for instance, to absorb hydrocarbons from an aqueous medium such as the absorption of oil from water. In some configurations, conventional absorbent polymers are contained within a permeable material; for example, conventional spill “socks” and booms can hold an absorbent polymer within a fabric to enable the absorbent polymer to be applied directly to the site of interest. Moreover, conventional absorbent booms can float on a water surface to help contain a spill from spreading beyond the boom. This application, however, requires the absorbent polymer to be contained within a permeable membrane or fabric.

Posted in: Briefs, Materials
Read More >>

MSET Industrial Early Warning System

System breakdowns in modern industrial environments can result in millions of dollars in lost time and productivity, and even the loss of life and property. In the utilities industry — where the continuous operation of coolant pumps is essential — the breakdown of a single pump can result in a loss of as much as $10 million in downtime.

Posted in: Briefs, Software
Read More >>

Wireless Temperature Sensor Having No Electrical Connections, and Sensing Method for Use

NASA's Langley Research Center has developed a robust wireless temperature sensor that does not require an electrical connection. The temperature sensor is built on NASA's SansEC sensor platform, which takes advantage of measuring dielectric changes. The temperature sensor is damage-tolerant, wireless, flexible, precise, and inexpensive. One promising application is for tire temperature sensors.

Posted in: Briefs, Sensors
Read More >>

Lightweight, Crack-Resistant, Silk Composite Sensor

New lightweight, energy-saving composites that won't crack or break even after prolonged exposure to environmental or structural stress are needed in industries such as civil infrastructure for bridges and buildings, consumer products, and aerospace. To help make that possible, a method was developed to embed a nanoscale damage-sensing probe into a lightweight composite made of epoxy and silk. The probe, known as a mechanophore, could speed up product testing, and potentially reduce the amount of time and materials needed for the development of many kinds of new composites.

Posted in: Briefs, Sensors
Read More >>

Compact, Lightweight, Athermal, Nanocomposite Telescopes with Freeform Optics

Small space missions such as CubeSats frequently require telescopes with highly sophisticated optical systems that are also low in mass and cost. The very limited spacecraft volume and mass limits also preclude adjustments to maintain critical alignment with change in temperature. Existing systems, especially those that employ folded optical paths with freeform optics, are expensive to fabricate. The optics, and support and metering structures, are also heavy due to the use of high-density material such as glass, aluminum, or nickel.

Posted in: Briefs, Photonics
Read More >>

TiBor Skin Composite Coatings

TiBor Skin is a two-part technology that creates toughened, corrosion- and wear-resistant composite structures. The technology consists of coatings or surface materials for application on metals, plus methods of applying these materials. It also provides methods of integrating the applied coatings with their substrates to form composite structures, the surfaces of which wear and corrode at rates much lower than those currently experienced in the industry.

Posted in: Briefs, Materials
Read More >>

Airborne Sense-and-Avoid Radar Panel

Although unmanned aerial systems (UAS) have proven increasingly useful in a variety of applications, their widespread usage within the National Airspace System is limited because of regulatory restrictions on their access to shared airspace.

Posted in: Briefs, Aeronautics, Aerospace
Read More >>

Robust Mesh Update Method for Grid Motion Problems

Over the past several decades, one class of problems in computational fluid dynamics (CFD) that has undergone substantial development involves movement of the fluid domain boundary. The problem class exists when the fluid domain boundary is either explicitly time-dependent, or is known a priori and determined as part of a flow solution in a coupled fashion. Free-surface fluid-structure interaction and forced-motion flows are typical of problems in this class. More specifically, as a boundary moves, a CFD mesh simulating the fluid dynamics can experience mesh cell distortion to the point of cell collapse, thereby rendering the CFD mesh meaningless.

Posted in: Briefs, Software
Read More >>

Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

A system of nozzles and pylons that redistributes jet exhaust noise sources upstream to reduce jet noise has been developed. Certain aircraft configurations install the propulsion engines above the wing or tail surfaces, or above the fuselage, or in some cases above the structure that is a blend of the wing and body or hybrid wing body aircraft. In these aircraft configurations, reducing noise propagation to the community below is possible by using the aircraft as an acoustic shield for the sources associated with the engine. The more difficult engine noises to be shielded are from the jet exhaust because they are typically distributed downstream, the equivalent of several engine nozzle diameters. This innovation redistributes jet exhaust upstream to reduce noise.

Posted in: Briefs, Aeronautics, Aerospace
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.