Safety Drain System for Fluid Reservoir

Researchers at NASA’s Marshall Space Flight Center have developed a system that reduces the entrapment risks associated with a pool or spa’s recirculation drain. The technology prevents hazards caused by suction forces on the body, hair, clothing, or other articles. Employing a novel configuration of drainage openings along with parallel paths for water flow, the system redistributes force over a much larger area, minimizing suction force at any localized area. With more efficient drainage and recirculation, the device improves performance, increases safety, and decreases operating costs. The technology can also provide thorough chemical mixing, which improves processes in systems and allows continued operation in the event of localized debris clogging a portion of the recirculation area. All of these benefits come without a protrusive drain cover, leaving the area safe and aesthetically pleasing.

Posted in: Briefs, Fluid Handling, Mechanical Components, Mechanics, Water, Human factors, Parts
Read More >>

Locking Mechanism for a Flexible Composite Hinge

This compact, self-deploying and locking boom has application in deployable booms, commercial satellites, and robotic vehicles that require high-data-rate communications.

Composites have excellent strength characteristics, are lightweight, and are increasingly being used in space applications. However, they are highly inflexible and require hinged joints when used as deployable structures. This is a challenge for CubeSats/SmallSats, as the hinges and actuation mechanisms get very small and require multiple custom precision parts. A method of impregnating carbon fibers with a silicone matrix has been developed, which makes the composite flexible. This also makes it self-deploying, as the strain energy in the fibers will cause it to straighten. Unfortunately, a purely flexible beam does not have the required rigidity to maintain dimensions accuracy, as it can sag.

Posted in: Briefs, Mechanical Components, Mechanics, Composite materials, Lightweight materials, Materials properties, Parts, Satellites
Read More >>

Temperature-Compensating PMT Housing

Shrinking or contracting light guides is a problem when photomultiplier tubes (PMTs) are glued to the guides. If there is no way to allow movement of the PMTs, when the temperature goes down, the light guide contracts and breaks the glue joint. The PMTs cannot be left loose to rattle around inside the detector. They must be held precisely, yet gently, and allowed to move.

Posted in: Briefs, Fluid Handling, Mechanical Components, Mechanics, Optics, Optics, Thermodynamics, Thermodynamics, Adhesives and sealants
Read More >>

Air Compressor

Gardner Denver Thomas (Sheboygan, WI) offers the 2380 series twin WOB-L® piston oil-less air compressor designed for pressure/vacuum and high flow. It provides 100 psi (6.9 bar) maximum pressure with open flow of 2.3 cfm (65 l/min). The air compressor is fan-cooled and has a one-piece monolithic head. Weighing 12 pounds, it is 9.31" (236.5 mm) long × 5.14" (130.6 mm) wide × 6.73" (171 mm) high. The twin-cylinder design helps provide reliability, low vibration, and quiet operation.

Posted in: Products, Aerospace, Automotive, Mechanical Components, Automotive
Read More >>

High-Speed Backplane Connector System

Samtec (New Albany, IN) has expanded its ExaMAX® High-Speed Backplane Connector System optimized for high-density and high-speed performance. The ExaMAX® header and right-angle receptacle system (EBTM/EBTF-RA Series) is optimized for speeds up to 28 Gbps on a 2.00 mm column pitch or 56 Gbps on a 3.00 mm column pitch. For 28 Gbps performance, this system meets and exceeds OIF-CEI-28G-LR specifications. Return loss compliance is achieved in both 85 Ω and 100 Ω systems due to targeting the 92 Ω specifications and controlling reflections at all geometry transitions within the connector.

Click here to learn more.

Posted in: Products, Mechanical Components
Read More >>

Keylock Switches

APEM, Vista, CA, introduced LK Series keylock switches available in nickel-plated or black overmolded barrel shutter and key. The multi-position switches are available in momentary and maintained functions, and in single or double pole configurations. They feature two-, three-, and four-position locking configuration with positive detent and multiple key-pull locations. They are rated for 4A at 125 VAC or 28 VDC, with a mechanical lifespan of 6,000 cycles at full load.

Posted in: Products, Electronic Components, Mechanical Components
Read More >>

Epoxy-based Hermetic Feedthroughs Boost Switchgear Reliability

With medium-voltage switchgear, progress is being made with regard to finding alternatives to SF6 as an insulation gas. Designs that incorporate dry air or a mixture of fluoroketone, nitrogen and oxygen as the insulating gas are being explored to minimize environmental impact.

Posted in: White Papers, Aerospace, Defense, Mechanical Components, Mechanics
Read More >>

Jet Engine Exhaust Nozzle Flow Effector

Shape memory alloy provides variable shape control of aircraft structure through actively deformable surfaces.

NASA’s Langley Research Center has created novel flow effector technology for separation control and enhanced mixing. The technology allows for variable shape control of aircraft structure through actively deformable surfaces. The flow effectors are made by embedding shape memory alloy actuator material in a composite structure. When thermally actuated, the flow effector deflects into or out of the flow in a prescribed manner to enhance mixing or induce separation for a variety of applications, including aeroacoustic noise reduction, drag reduction, and flight control. NASA developed the active flow effectors for noise reduction as an alternative to fixed-configuration effectors, such as static chevrons, that cannot be optimized for airframe installation effects or variable operating conditions, and cannot be retracted for off-design or failsafe conditions.

Posted in: Briefs, Aerospace, Aviation, Mechanics, Alloys, Smart materials, Nozzles, Exhaust pipes, Jet engines
Read More >>

A Structural Joint with Multi-Axis Load Carrying Capacity

The technology can be used in aerospace and automotive applications, outdoor structures, and sporting goods.

NASA’s Langley Research Center has developed a composite joint connector that is more structurally efficient than joints currently on the market. Traditionally, composite joints can bear heavy loads along their length but tend to fail when stress is applied along multiple axes. This joint is designed to minimize stress concentrations, leading to overall increased structural efficiency when compared to traditional joints.

Posted in: Briefs, Joining & Assembly, Mechanics, Composite materials, Parts, Connecting rods
Read More >>

Eddy-Current-Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

Innovators at NASA’s Marshall Space Flight Center have developed a suite of prototype fluid plug technologies with an array of capabilities for fluid flow metering, mixing, and conditioning. Each innovation within this suite is based upon a core technology that has no moving parts, is simple to manufacture, and provides high reliability and efficiency. Also, the base fluid plug technology can be modified with very few or no hardware changes to achieve the desired effect or combination of mixing, metering, and conditioning capabilities depending on the application.

Posted in: Briefs, Mechanical Components, Mechanics, Computational fluid dynamics, Customization, Product development, Fittings, Valves, Reliability, Reliability
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.