Representation and Analysis of System Behavior Using Monotonic Signals

NASA has developed a new method for analyzing complex system behavior that also may be viewed as a type of data visualization and decision support tool. Large complex control systems may have thousands or even millions of sensors, each providing some type of signal that ultimately integrates into a larger organization. For each signal, behavior is represented by a sequence of pairs, with each pair containing a change value (monotonic) and a time interval length over which each of these changes occurs. Signal amplitudes and first derivatives serve as markers for these time intervals. This approach permits a finer scale characterization of the signal(s). The novelty of this approach is in using human visual interpretation in combination with computer signal analysis to monitor the behavior of complex systems in an enhanced manner.

Posted in: Briefs, Software, Finite element analysis, Electronic control systems, Imaging, Imaging and visualization, Electronic control systems, Imaging, Imaging and visualization, Systems management
Read More >>

Interface Simplifies Remote Robot Operation

The traditional interface for remotely operating robots employs a computer screen and mouse to independently control six degrees of freedom, turning three virtual rings and adjusting arrows to get the robot into position to grab items or perform a specific task. But for someone who isn’t an expert, the ring-and-arrow system is cumbersome and error-prone. It’s not ideal, for example, for older people trying to control assistive robots at home.

Posted in: INSIDER, Motion Control, Robotics, Software
Read More >>

How to Add CAN-FD, Security and ASIL Safety Compliance to your Design with S32K MCU

The new S32K1 MCU family combines a breakthrough suite of automotive grade tools and software with a scalable family of 32-bit ARM Cortex-M based MCUs with future-proof features. All family members are designed in accordance with the ISO 26262 standard, AEC-Q100 qualified at up to 125°C, and guaranteed by NXP’s Product Longevity Program which assures supply for a minimum of 15 years.

Posted in: On-Demand Webinars, Software
Read More >>

AMMOS Common Access Manager (CAM)

The Common Access Manager (CAM) software was developed to control access to functions and data for mission control, telemetry, tracking, instrument data, and other ground data system capabilities. The CAM software is used by Advanced Multi-Mission Operations System (AMMOS) and Deep Space Network (DSN) subsystems, and is available for use in any NASA-funded mission.

Posted in: Briefs, Software, Computer software / hardware, Computer software and hardware, Flight control systems, Computer software / hardware, Computer software and hardware, Flight control systems, Data management, Logistics
Read More >>

Automating Optimization and Design Tasks Across Disciplines

A multidisciplinary design analysis and optimization (MDAO) solution leverages existing analysis codes to streamline optimization tasks early in the design process.

When tackling modern engineering projects, designers must consider not only engineering parameters, but also such key factors as cost, safety, and environmental impact. To exploit the interactions of these various elements, designers must consider them simultaneously. Unfortunately, doing so significantly increases project complexity.

Posted in: Briefs, Software, Design processes, Optimization, Systems engineering, Automation
Read More >>

Aviation Environmental Design Tool (AEDT)

The Federal Aviation Administration's Aviation Environmental Design Tool (AEDT) is a software system that dynamically models aircraft performance in space and time to estimate fuel consumption, emissions, noise, and air quality assessments. Full-flight gate-to-gate analyses are possible for study sizes ranging from a single flight at an airport, to scenarios at the regional, national, and global levels.

Posted in: Briefs, Software, Mathematical models, Computer software / hardware, Computer software and hardware, Computer software / hardware, Computer software and hardware, Environmental testing, Aircraft operations
Read More >>

Intelligent Software Enables Design of Greener, More Efficient Construction Vehicles

University of Warwick (UK) engineers are optimizing the fuel economy of next-generation offhighway vehicles by introducing new intelligent power systems for improved engine operation. This could lead to significant fuel savings and fewer carbon emissions for the industry. The team is analyzing a current fleet of construction vehicles to better understand the opportunities for emissions reduction and intelligent control.

Posted in: Briefs, Software, Optimization, Fuel economy, Fleet management, Engine control systems, Construction vehicles and equipment
Read More >>

Shift: Self-Healing Independent File Transfer

Shift replaces traditional sequential transfers, which are highly vulnerable to failures at every point along the path between the client and remote file systems.

In high-end computing environments, remote file transfers of very large data sets to and from computational resources are commonplace, as users typically are widely distributed across different organizations and must transfer in data to be processed, and transfer out results for further analysis. Local transfers of this same data across file systems are frequently performed by administrators to optimize resource utilization when new file systems come online or storage becomes imbalanced between existing file systems. In both cases, files must traverse many components on their journey from source to destination, where there are numerous opportunities for performance optimization as well as failure. A number of tools exist for providing reliable and/or high-performance file transfer capabilities, but most do not support local transfers, require specific security models and/or transport applications, are difficult for individual users to deploy, and/or are not fully optimized for highest performance.

Posted in: Briefs, Software, Architecture, Computer software / hardware, Computer software and hardware, Data exchange, Architecture, Computer software / hardware, Computer software and hardware, Data exchange, Reliability, Reliability
Read More >>

Designing Stronger Concrete

Plasticity at small scales boosts concrete's utility as the world's most-used material by letting it constantly adjust to stress, decades or centuries after hardening. To find out why, Rice University researchers performed an atom-level computer analysis of tobermorite, a naturally occurring crystalline analog to the calcium-silicate-hydrate (C-S-H) that makes up cement, which in turn holds concrete together. By understanding the internal structure of tobermorite, they hope to make concrete stronger, tougher, and better able to deform without cracking under stress.

Posted in: Briefs, Software, Finite element analysis, Composite materials, Materials properties, Test procedures
Read More >>

Designing Materials with Reprogrammable Shape and Function

Researchers from Harvard University's John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute of Biologically Inspired Engineering have developed a general framework for designing reconfigurable metamaterials — materials whose function is determined by structure, not composition.

Posted in: Briefs, Software, Research and development, Materials properties, Smart materials, Biomechanics
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.