Portable Medical Diagnosis Instrument

Four cutting-edge sensor technologies enable minimally or non-invasive analysis of various biological samples.

NASA has developed a novel technology strategy called “The NASA Analyzer” that would provide comprehensive in-flight medical diagnostic capability in a compact, handheld device for human deep-space missions such as Mars. Key features of the technology include the ability to handle multiple sample types (breath, saliva, blood), and the ability to measure virtually any analyte, including future analytes as they emerge. The device provides both non-invasive and minimally invasive sampling capabilities, which will be required during long-duration exploration missions. Breath and saliva are fully non-invasive and can provide critical health assessment information very rapidly. From small blood samples, information about macromolecular analytes, as well as blood cell counts, can be obtained. The device consists of four cutting-edge technologies integrated into a single, compact medical diagnostic tool with wireless (e.g., smartphone) capability. In addition to space applications, this innovative technology will very likely have important spinoffs in medicine and public health on Earth.

Posted in: Briefs, Bio-Medical, Medical, Wireless communication systems, Wireless communication systems, Fluids and secretions, Medical equipment and supplies, Diagnostics, Spacecraft
Read More >>

Methods and Systems for Non-Invasive Treatment of Tissue Using High-Intensity Focused Ultrasound Therapy

Minimally invasive and non-invasive therapeutic ultrasound treatments can be used to ablate, necrotize, and/or otherwise damage tissue. High-intensity focused ultrasound (HIFU), for example, is used to thermally or mechanically damage tissue. HIFU treatments can also cause mechanical disruption of tissue with well-demarcated regions of mechanically emulsified treatment volumes that have little remaining cellular integrity. For certain medical applications, tissue emulsification may be more favorable than thermal damage because it produces liquefied volumes that can be more easily removed or absorbed by the body than thermally coagulated solid volumes.

Posted in: Briefs, Bio-Medical, Medical equipment and supplies, Acoustics, Acoustics
Read More >>

Making Great Strides: Gaming Camera Improves MS Gait Assessment

Even university researchers play Xbox from time to time. Not all mechanical engineers, however, have the idea to use the popular gaming console’s camera to assist doctors in clinical applications.

Posted in: Application Briefs, Cameras, Diagnostics, Medical, Patient Monitoring, Optics, Optics, Diseases, Medical equipment and supplies, Biomechanics
Read More >>

2016 Create the Future Design Contest

The 2016 Create the Future Design Contest — sponsored by COMSOL, Mouser Electronics, and Tech Briefs Media Group (publishers of NASA Tech Briefs) — recognized innovation in product design in seven categories: Aerospace & Defense, Automotive/Transportation, Consumer Products, Electronics, Machinery/Automation/ Robotics, Med ical, and Sustainable Technologies. In this special section, you’ll meet the Grand Prize Winner, as well as the winners and Honorable Mentions in all seven categories, chosen from over 1,100 new product ideas submitted from a record 71 countries. To view all of the entries online, visit www.createthefuturecontest.com.

Posted in: Articles, Aerospace, Automotive, Defense, Electronics, Alternative Fuels, Energy, Renewable Energy, Green Design & Manufacturing, Medical, Patient Monitoring, Automation, Robotics, Design processes, Collaboration and partnering
Read More >>

2016 Create the Future Design Contest: Machinery/Automation/Robotics Category Winner

SHAPE MEMORY ALLOY BASED SAFETY LATCH

Nicholas W. Pinto, Suresh Gopalakrishnan, Chandra S. Namuduri, Nancy L. Johnson, and Mark Vann General Motors, Warren, MI

General Motors has invented a device that indicates when an unsafe level of energy remains in an electrical panel box after the main power has been disconnected. Possible sources of this energy may be incorrect wiring, external device add-ons, and the presence of residual charge from capacitors. The device works by engaging a safety latch mechanism built with shape memory alloy (SMA) technology along with an audio or visual alarm.

Posted in: Articles, Manufacturing & Prototyping, Implants & Prosthetics, Medical, Automation, Robotics, Alloys, Smart materials, Hardware, Restraint systems
Read More >>

2016 Create the Future Design Contest: Medical Category Winner

CONTINUOUS WEARABLE BLOOD PRESSURE MONITOR

Sean Connell, Kyle Miller, Jay Pandit, and Jung-En Wu Bold Diagnostics, Evanston, IL

Bold Diagnostics has developed a blood pressure monitoring system that is comfortable for patients and seamlessly integrates into their everyday lives. The low-cost monitor includes a set of wearable wristbands that uses optical biosensors to continuously measure blood pressure, and a smartphone application that uploads a report into the patient’s medical record for clinician review. The solution provides accurate measurements with greater frequency, enabling doctors to positively impact clinical outcomes with proper blood pressure management.

Posted in: Articles, Medical, Patient Monitoring, Design processes, Sensors and actuators, Sensors and actuators, Cardiovascular system, Medical equipment and supplies
Read More >>

2016 Create the Future Design Contest: Consumer Products Category Winner

MIFOLD

Jon Sumroy, Carfoldio, Ltd., Ra’anana, Israel

The mifold Grab-and-Go booster seat for children aged 4-12 is more than ten times smaller than a regular booster seat and just as safe. A regular booster seat works by lifting a child up to the position of an adult. mifold does the opposite, securing the seatbelt in the correct position on the hips and shoulder by holding the seatbelt down at three points.

Posted in: Articles, Automotive, Consumer Product Manufacturing, Imaging, Medical, Design processes, Children, Seats and seating, Seats and seating, Child restraint systems
Read More >>

Planning for Implementation of the European Union Medical Devices Regulations – Are You Prepared?

The Medical Device and In Vitro Medical Device Regulations represent the most significant change to the European legislation for medical devices for nearly 20 years. Understanding the requirements is key to your ability to develop an implementation plan to ensure continuing regulatory compliance and provide the EU market with safe medical devices.

A new white paper, “Planning for Implementation of the European Union Medical Devices Regulations: Are You Prepared?” focuses on the practical aspects of implementation. It discusses decisions that need to be made and includes questions to ask about your organization’s preparedness to comply with the new requirements.

Download this new white paper to learn how to address:

Activities and requirements for manufacturers, authorized representatives, importers, and distributors Existing products and their technical documentation, including clinical evidence Products in the development pipeline Responsibilities of the person handling regulatory compliance, ISO 13485:2016 certification, and lifecycle management Content and maintenance of technical documentation Unique device identification, implant cards, and labelling changes PMS plans, periodic safety update reports (PSURs) or post-market surveillance reports, and post-market clinical follow-up (PMCF)
Posted in: White Papers, Manufacturing & Prototyping, Bio-Medical, FDA Compliance/Regulatory Affairs, Medical
Read More >>

Ensuring the Reliability of Disposable Syringes with Light-Cure Adhesives

Perhaps one of the most challenging aspects of disposable medical syringe production involves permanently and safely attaching the stainless steel cannula to the plastic hub. This joint is critical to the safety of syringes found on hypodermic and biopsy needles, syringes, winged infusion sets, blood lancets, and a variety of other devices. In all these applications, poor hub-to-cannula assembly could result in leakage of bodily fluids and medication or catastrophic device failure, situations that could be dangerous to the patient and the medical professional. Mechanical failure of a syringe can cause painful insertion or extraction, seal failure during use, cancellation of a procedure, or other unsafe complications.

Posted in: White Papers, White Papers, Bio-Medical, Medical
Read More >>

The Simple Guide to a Life Science Recall

Recalls erode consumer trust, brand integrity, company image and longevity. Since there is a lengthy process that follows the event of a recall, here is how a GMP Compliance Management System can help to make the process as efficient, painless and quick as possible.

Download this paper to learn about:

Complaint Handling Product Returns Document Control Recall Evaluation Corrective Action Centralized Reporting
Posted in: White Papers, White Papers, Bio-Medical, Medical
Read More >>

The U.S. Government does not endorse any commercial product, process, or activity identified on this web site.